
UNCLASSIFIED

AD294 921

4 Me

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

w

UNCLASSIFIED

NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.

., 294 921
#XTUTF 0

AIR UNIVERSITY
UNITED STATES AIR FORCE

cb

SCHOOL OF ENGINEERING

JAN 30 1963
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

-ISIA

A?-WP-O-MY ft 3, 3NO

Presented to the Faculty of the School of Engineering of

the Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the

Master of Science Degree

in Electrical Engineering

IMPROVEMENT OF THE IBM 1620 SPS
PROCESSOR

THESIS

GE/EE/62-5 Leland G. Fay
Capt USAF

Graduate Electronics

12 December 1962

AF WP.O JAN 6]

GE/F.E/62-5

Preface

The selection of this thesis project came as a

result of an interest in the growing importance of

computer programming in the fields of weapon system

development and operations research. When this topic

was brought to my attention by Professor C. H. Houpis

it seemed like an excellent opportunity to become fam-

iliar with the problems involved in the application of

computer programming techniques to these fields.

The excellent facilities available at Wright Field

made the preparation of this thesis substantially easier.

Of particular importance were the 7090 Data Processing

System and the auxiliary input/output equipment that

were used for numerous assemblies of my computer program.

By their willingness to cooperate in the use of their

equipment the personnel of the Analysis Branch, ASNCDA

contributed immeasurably to this project.

A great deal of thanks goes to Lt. Richard L. Pratt,

my faculty advisor, for all his assistance and

encouragement in the preparation of this thesis. Only

through his guidance was I able to learn in sufficient

time the fundamentals of computer programming and

analysis that enabled me to conduct an independent

research in this area. His suggestions and knowledge of

computer programming saved me many hours of lost labor

ii

GE/EE/62-5

and effort throughout the thesis investigation.

Special thanks go...to my wife for her patience

throughout the past year and a half and for typing this

thesiso.and to my children for their hours of forgone

"playtimes".

And last is a vote of confidence to the AFIT 1620

computer which has been my constant companion (friend and

foe) throughout these past five months.

Leland G. Fay

iii

GE/EE/62-5

Contents

Page

Preface .. ii

List of Figures v

List of Tables vi

Abstract vii

I. Introduction 1

II. Terminology 5

III. General Procedures 17

IV. Methodology a 22

V. Program Checkout 41

VI. Results, Conclusions and Recommendations... 63

Bibliography 68

Appendix A ... 70

Appendix B ... 76

Appendix C .. 102

Appendix D 114

Vita 157

iv

List of Figures

Figure Lage

I Instruction Format 5

2 Alphameric Codes..00 6 .. Q... a 7

3 Storage Layout of 1620/1710
SPS Processor 24

4 Recoding 0.......... 26

5 Routines Designed to Search the
Symbol Table 33

6 Flow Diagram of the Routine

Type-Out Source Statement 40

"] Routine to Type-Out Source Statement...facing 39

8 Test Program for Phase ra..r....s 42

9 Processor Instruction Routines............. , 44

10 Instruction Routine Test Program 45

11 Error Handling Procedure Test Program 47

Ila Phase V Overall Operation Test Program.facing 48

12 Operation of Program Switches 97

13 1620 Data Processing System 71

14 The IBM 7090 Data Processing System 72

15 The IBM 1401 Data Processing System 73

16 The IBM 870 Document Writing System 74

17 The IBM 407 Accounting Machine 75

18 Input Routine Flow Diagram 99

19 Load Label Routine Flow Diagram 100

20 DEND/TCD Routine Flow Diagram 101

v

GE/EE/6 2-5

List of Tables

Table f-

I Mnemonic Operation Codes...............9

11 Unique Mnemonic Operation Codes........... 11

vi

GE/EE/(;2-5

Abstract

The iB3M 1620 SPS Processor Program is examined

to determine the possibility of shortening the program

and of increasing the capability of the processor.

SPS programming and coding techniques used to accomplis

these ends are described and illustrated. Program

checkout procedures are explained and the modified

processor is redesignated the AFIT Version of the 1620

SPS Processor. Operating instructions and a listing of

the program are included.

vii

GE/ E/62-5

IMPROYEENT OF THE IBM 1620 SPS PROCESSOR

I. Introduction

The purpose of this thesis project is to improve

the IBM 1620 SPS Processor Program. A full appreciation

of the problems encountered in this study requires

complete familiarity with the IBM 1620 Data Processing

System and the IBM 1620/1710 Symbolic Programming System.

No attempt will be made to present a detailed break-

down of these systems, but those system aspects central

to the problem under investigation will be discussed

in context.

The IBM 1620 Data Processing System is a small

electronic digital computer system designed for technical

and scientific applications. For the purposes of this

investigation the configuration of this system will

include the IBM 1620 Central Processing Unit, and the

IBM 1622 Card Read-Punch Unit which provides the punched

card input and output for the processing system.

One of the programming systems designed for the IBM

1620 Data Processing System has been designated the

1620/1710 Symbolic Programming System. The complete

system consists of the symbolic language used by the

programmer in writing a source program, the library of

subroutines and linkage instructions, and the processor

i

GE/EE/62-5

program which translates the symbolic language used by

the programmer into the operating machine language of

the 1620 (Ref 5:5).

This thesis investigation concerns itself with the

modification of the processor program only.

The criteria established for the improvement of the

IBM SPS Processor program were that the processor program

would (1) occupy less space in core storage, and (2) have an

increased performance capability. The adoption of these

criteria resolved the thesis study into four major areas

of investigation. These were:

1. To shorten the SPS Processor program so that it

would occupy less memory storage space without

reducing the capability of the processor.

2. To increase the capability of the SPS processor

by incorporating the necessary coded routines

or modifications into the processor program.

3. To perform a functional and operational checkout

of the modified processor program using standard

computer procedures.

4. To prepare a compiled list of operating procedures

for the modified processor program for use with

the 1620 computer facility at the Institute of

Technology.

2

GE/EE/62-5

Since the importance of this study rests on the

results achieved and the methodology employed, the

thesis has been divided into chapters, each reflecting

a particular aspect of the methods and techniques

employed in this investigation,

Chapter two defines the terms and concepts most

frequently used in this report. It includes a functional

and operational description of 1620 Data Representation,

the Symbolic Programming System and the SPS Processor.

Chapter three describes the basic programming process

and associated equipment that was utilized in modifying

the IBM 1620 SPS Processor Program.

Chapter four consists of two parts. Part one

describes the concepts, methods and coding techniques

employed to shorten the IBM SPS Processor Program. Part

two outlines the computer programming and coding

techniques utilized to increase the capability of the

SPS processor.

Chapter five outlines the checkout procedures and

techniques that were used to test the modified program.

Chapter six is a summary of the results obtained

by employing the methods and techniques outlined in the

preceding chapters. This chapter essentially itemizes

the major improvements and modifications incorporated

into the AFIT Version of the SPS Processor Program.

3

G1E/EE/62-5

The appendix contains a compiled set of operating

instructions and a detailed description of the AFIT

Version of the 1620 SPS Processor Program. A label

reference index and a program listing of the AFIT Version

of 1620 SPS are also included.

The thesis as outlined above essentially provides a

step by step analysis of the procedures, methods, and

techniques of computer analysis and programming that

led to the improvement of the IBM 1620 SPS Processor

Program and resulted in the AFIT Version of 1620 SPS.

4

GE/FX/62-5

13. Terrmipo y

This chapter is intended to serve as a reference

for the terms and concepts utilized throughout the

remainder of this thesis report. Those persons thoroughly

familiar with the Symbolic Programming System and the

1620 Data Processing System may desire to proceed directly

to chapter I1.

This chapter will discuss three topics - 1620 Data

Representation, the Symbolic Programming System, and

Processor Operation.

1620 Data Representation

Instruction Format. A 12-digit machine language

instruction consisting of a 2-digit operation (OP) code,

a 5-digit "P" address and a 5-digit "Q" address is used

in the IBM 1620. The core storage format of the

instruction is illustrated in Figure 1 (Ref 6:11).

OP P Q
CODE ADDRESS ADDRESS

0o 01 P2 P3 P4 P5 P6 Q 7 Q8 Q9 Ql 0 Q1 1

Fig. I

Instruction Format

5

GE/EE/62-5

Data Fields. All data can be classified as digits,

fields or records, depending on the manner in which they

are addressed. Each core storage position is addressable

and can store one digit of information. A field consists

of a number of consecutively addressed digits that are

processed from right to left until terminated by a flag

bit.

Field

x x

Flag Bit Addressed Digit
(End of Field) (Highest Numbered Core

Storage Position)

A record consists of a field or fields of data

that are grouped for transmission. Internal records

are processed from left to right until terminated by a

record mark,

Operation Mode. The IBM 1620 can operate in either

the numeric or alphameric mode when reading or writing

uata; the mode is designated by the input/output instruc-

tion. In the alphameric mode two digits of core storage

are required to represent a character. Figure 2 shows

the digits that are assigned to represent the alphameric

characters used in the 1620. Use of the alphameric mode

of operation permits program statements to be written in

a symbolic language vore meaningful and easier to handle

than the numerical machine language (Ref 6:7-8).

6

GE/EE/62- 5

Two-Di git Alphameric

Representation O0 b Character
03
04)
10 4
13 $
14
20
21 /
23
24 (
33
34
41 A
42 B
43 C
44 D
45 E
46 F
47 G
48 H
49 1
50
51 J
52 K
53 L
54)A Minus
55 N 0 through 9
56 0
57 P
58 Q
59 R
62 S
63 T
64 U
65 V
66 W
67 X
68 Y
69 Z
70 0
71 1
72 2
73 3
74 4 Plus or unsigned
75 5 0 through 9
76 6
77 7
78 8
79 9

Fig. 2

Alphameric Codes

7

GE/EE/62-5

Symbolic Programming Sistem

The Symbolic Programming System is designed to

simplify the preparation of programs for the 1620 Data

Processing System. The symbolic language is the not-

ation in which the programmer codes the program and is in

the form of mnemonic operation codes and a combination

of fixed and free format statements. A program written

in this manner which is intended for translation into

machine language is called a "source" program.

E , Statements. There are three general types

of statements, which are based on the type of operation

code, that comprise the source program: (1) Area

Definition Statements, which correspond to declarative

operation codes, are used to define work areas and

input/output areas. (2) Instruction Statements, which

correspond to imperative op-codes, specify the job the

object program is to perform; these are classified as

arithmetic, internal data transmission, branch, and

program control instructions. (3) Processor Control

Statements, which correspond to the control op-codes,

provide the programmer with control over portions of the

assembly process (Ref 18:1,3).

For convenience a functional listing of 1620 mnemonic

operation codes is included in Table I on page 9. Table

2 on page 11 lists the unique mnemonic operation codes that

are provided in the Symbolic Programming System.

8

GE/FEE/62-5

Table I

Mnemonic Operation Codes

1. Area Definitions

Operation Code Description

DS & DAS & DSS Define Symbol

DC & DAC & DSC Define Constant

DSA Define Symbolic Address

DSB Define Symbolic Block

DNB Define Numeric Blank

2. Arithmetic Instructions

Mnemonic Numeric Description
Operation Operation
Code Code

A 21 Add

AM 11 Add Immediate

S 22 Subtract

SM 12 Subtract Immediate

C 24 Compare

CII 14 Compare Immediate

M 25 Multiply

MM 15 Multiply Immediate

LD 28 Load Dividend

LDM 18 Load Dividend Immediate

D 29 Divide

DM 19 Divide Immediate

9

GE/EE/62-5

3. Internal Data Transmission

Mnemonic Numeric Description
Operation Operation
Code Code

TD 25 Transmit Digit

MF 71 Move Flag

TDM 15 Transmit Digit Immediate

TF 26 Transmit Field

TFM 16 Transmit Field Immediate

TR 31 Transmit Record

TNS 72 Transfer Numerical Strip

TNF 73 Transfer Numerical Fill

4. Branch Instructions

B 49 Branch

BNF 44 Branch No Flag

BNR 45 Branch No Record Mark

BD 43 Branch on Digit

BI 46 Branch Indicator

BNI 47 Branch No Indicator

BT 27 Branch and Transmit

BTM 17 Branch and Transmit Immediate

BB 42 Branch Back

5. Program Control Instructions

K 34 Control

SF 32 Set Flag

CF 33 Clear Flag

H 48 Halt

NOP 47 No Operation

10

GE/EE3'/6 2-5

6. Processor Control Operation Codes

Operation Code Description

DORG Define Origin

HEAD HEAD

TCD Transfer Control and Load

TRA Transfer to Return Address

DEND Define END

1(a

GE/EE/62-5

Table II

Unique Mnemonic Operation Codes

1. Unique Input/Output Mnemonic

OP Code Description

RNTY Read Numerically Typewriter

RNCD Read Numerically Card Reader

WNTY Write Numerically Typewriter

WNCD Write Numerically Card Punch

DNTY Dump Numerically Typewriter

DNCD Dump Numerically Card Punch

RATY Read Alphamerically Typewriter

RACD Read Alphamerically Card Reader

WATY Write Alphamerically Typewriter

WACD Write Alphamerically Card Punch

2. Uniquc Typewriter Control Mnemonic

TBTY Tabulate Typewriter

RCTY Return Carriage Typewriter

SPTY Space Typewriter

3. Unique Branch Indicators

BH Branch High

BE Branch Equal

BNN Branch Not Negative

BP Branch Positive

BZ Branch Zero

BV Branch Overflow

BXV Branch Exponential Overflow

BA Branch Any

BNL Branch Not Low

BCI Branch Console Switch I ON

BC2 Branch Console Switch 2 ON

BC3 Branch Console Switch 3 ON

11

GE/EE/6 2!-5

3. Unique Branch indicators (cont.)

OP Code Description

BC4 Branch Console Switch 4 ON

BNH Branch Not High

BNP Branch Not Positive

BNE Branch Not Equal

BNZ Branch Not Zero

BNV Branch No Overflow

BNXV Branch No Exponential Overflow

BNA Branch Not Any

BL Branch Low

BN Branch Negative

BNCI Branch Console Switch I OFF

BNC2 Branch Console Switch 2 OFF

BNC5 Branch Console Switch 3 OFF

BNC4 Branch Ccnsolz Switch 4 OFF

BLC Branch Last Card

BNLC Branch Not Last Card

Ila

GE/EE/62-5

Statement Format. Each statement except a comment

statement may consist of a label field, an operation code

field and an operands field.

A Label Field is used to associate a name with a

statement to allow a symbolic reference to the statement.

Only statements referred to elsewhere in the program

need be labeled.

The Operation Code Field contains the actual two-

digit numerical operation code or the mnemonic represen-

tation of the operation code to be performed.

The Operands Field is used to specify the information

that is to be operated upon. The field will contain

symbolic or absolute addresses, arez zizes, instruction

modifiers, or constants.

Asterisks, In order to eliminate the necessity for

too many labels, an asterisk (*) is used for addressing

relative to the instruction in which the asteriak is

contained.

When the asterisk address is used with either area

definition or control statements, it references the low

order (rightmost) position of the field last defined.

For example the statements

TFU START,0
DC I,@,*

produce the instruction 1601876000/ where START equals

01876 (Ref 5:14).

12

GE/EE/62-5

Address Adjustment. Address adjustment, which is

permitted with all addresses, actual, symbolic, or

asterisk, is used to direct the processor to adjust the

addresses of operands arithmetically. This feature reduces

the number of symbols necessary for a source program

by providing a means to reference a location a given

number of positions away from a specific address, Fox,

example in the statements

TBTY
DC 1,7,*-5

the address assigned the constant 7 is 5 digits less than

the address of the low order position of the TBTY state-

ment. The assembled instruction appears as 34 00O0l00108

(Ref 5:15),

Important Instructions, Instructions that are used

quite frequently in the examples and illustrations through-

out this thesis are defined below.

The Branch (B-49) instruction causes an unconditioual

branch to the instruction at the P address, which is

the next instruction to be executed. The Q part of the

instruction is not used.

The Branch and Transmit (BT-27) instruction accomplishes

three things: (I) The address of the next instruction

in sequence is saved. (2) The instruction at the P

address is the next one executed. (3) The data in the

field at the Q address is transmitted to the P add-res

ninus one and to successively lower core storage positions.

13

GE/EE/62-5

This instruction is used to branch to subroutines.

The Branch Back (BB-42) instruction causes the

computer to branch unconditionally to the instruction

at the address saved by the Branch and Transmit

instruction. This instruction is used to return from a

subroutine.

The Transmit Field (TF-26) instruction causes the

data field at the Q address to be transmitted to the

field at the P address.

The Transmit Record (TR-31) causes the data at the

Q address to be transmitted to the P address and

successively higher core storage positions until

terminated by a record mark (Ref 6:21-27).

A Define Origin (DORG) statement instructs the

processor to override its automatic assignment of storage

and to begin the assignment of succeeding instructions

at the location specified in the operand.

A Define Constant (DC) statement is used to enter

nuwerical constants into the object program, and to

assign names to the constants.

A Define Symbol (DS) statement is used to define

symbols used in the source program by assigning storage

addresses or values to symbolic addresses or labels.

It also assigns storage for input, output, or working

areas (Ref 5:17-20,37).

14

GE/EE/6 2-5

Processor Operation

The processor is the 1620 machine language program

which performs the function of translation and assembly.

The processor takes the source program in symbolic Jang-

uage, converts the mnemonic codes into machine language

codes, assigns addresses in core Atorage to instructions

and symbols, and assembles a machine language program

known as the "object" program (Ref 18:2). The general

operation of the processor in performing these functions

is described below.

The processing of a source program is accomplished

in two passes. A statement is read, and if the statement

is not a comment the operation code field is identified

by a search through the operation code table, Each

entry of this table contains the mnemonic code and a

code digit to indicate the routine which processes this

class of instructions. When the correct op code has

been identified a branch to the routine that will process

that class of instructions is executed.

During pass I, after the statement has been processed

by the appropriate routine and the address counter has

been adjusted, a branch is made to the label loading

routine. In this routine the label is first tested to

see if it is blank, and if it is, a branch to process

the next statement occurs. If the label is not blank a

search is made of the symbol table. If the label is

15

GE/EE/6 2-5

already present, it is multiply defined, and the state-

ment is treated as if it had a blank label. If the label

is not already present, and space is available in the

table, the label is placed in the table together with

its assigned address.

During pass II the instruction operands are scanned

and assembled by a closed subroutine which operates as

follows: The operand field is scanned and the characters

are collected and examined. If the characters represent

a symbol, the symbol table is searched for equivalence,

and if the symbol is not found, the symbol is undefined.

If the symbol is present, its assigned address is stored

and address adjustment, if designated, is performed.

After all symbols in the field have been collected and

evaluated, a branch back from the routine occurs, and

the instruction is then assembled and readied for output

(Ref 17:10-15).

16

G;E/EE/6 2-5

III. General Procedure

The purpese of this chapter is to outline the chief

steps of the thesis investigation. The chapter will

describe the basic computer programming process and the

associated equipment that was utilized in modifying the

IBM 1.620 SPS Processor Program. Photographs and descri-

ptions of this equipment are included in Appendix A.

Analysis of the Processor ._oram

The first step in the programming process consists

of analyzing a listing of the processor program to deter-

mine possible areas of modification. This listing can be

obtained from the IBM Program Library or can be printed

on the IBM 407 accounting machine from the SPS Processor

Source deck. For this thesis project the program was

analyzed in terms of the two major areas of investigation

that were described in chapter I - to determine how the

program could be shortened and its capability increased.

Modification of the Processor Program

After completion of the initial analysis the program

changes must be converted to coded instructions and

incorporated into the processor program. At this point

the basic techniques of computer programming and coding

which are described in detail in chapter IV are applied.

Since many listings of the program will be made during

17

GE/EE/62-5

the course of the programming process, the number of

modifications made on any particular listing is a matter

of convenience.

Preparation of the Source Deck for a New Listing

The coded instructions that were prepared in step

two must now be punched on IBM cards and inserted in the

SPS source deck as modifications to the program. After

all. desired changes and deletions have been made the

SPS source deck can be used to obtain a new listing.

If further modifications are planned the listing is made

on the IBM 407 and the foregoing procedure repeated until

all changes have been incorporated.

P Assembly

When all modifications have been incorporated into

the processor source deck the program is assembled on the

computer. Due to the number of symbols used in the

modified processor program the IBM 1620 could not be

used; consequently all assemblies were performed on the

IBM 7090 Data Processing System. The input data consisted

of the 7090 processor card deck and the modified SPS

processor source deck. Since the input to the 7090 is

from tape only, off-line card-to-tape conversions were

performed on the IBM 1401 Data Processing System.

The output of the 7090 is a listing of the original

input data and the assembled machine language instructions,

written on another tape for off-line reproduction. Under

18

GE/Eb/62-5

control of the IBM 1401, the IBM 1402 Card Read-Punch

and the IBM 1403 Printer are used to convert this tape

listing to an output object deck and a printed listing.

The complete assembly process using the IBM 7090

is accomplished by the Analysis Branch, ASNCDA.

7090 Listing

The output listing of the 7090 contains the source

statements in SPS format and the machine language

instructions and storage addresses of the processor

program. Error messages, which are identified by five

asterisab, are printed out and precede the statement in

error. The symbol table and all undefined and multiply

defined symbols are printed out at the end of the listing.

If there are an excessive number of errors in the

listing the SPS source card deck should be modified and

a new assembly made. If there are few errors, corrections

can be made by inserting patch cards in the 7090 output

object deck.

Program Checkout

The 7090 output object deck is now loaded into the

IBM 1620 computer and standard computer techniques utilized

to check out the new processor. The checkout procedures*

are used in conjunction with the printed listing obtained

*The checkout procedures are described in detail in

chapter V.

19

GE/EE/62-5

from the 7090 to trouble-shoot the processor program*

As errors in the program are encountered, correcti3na are

made to the listing by rewriting the necessary coded

instructions. When a number of corrections have been

accumulated, the modifications should be punched on

cards, inserted in the SPS processor source deck and

the entire programming process repeated to obtain a

corrected object deck.

This process is continued until an operational

processor program is obtained that incorporates all the

desired modifications and changes.

Write Ep

As the processor is being tested the operating

procedures and techniques that best incorporate the

modifications into a workable program are being formulated.

When the optimum combination of convenience, flexibility

and capability has been obtained, a list of operating

instructions and a description of the modifications in

the program are compiled into a reference manual for

general distribution at the computer facility.

Program Library

In order to maintain the sequence of the coded

statements the final processor program is renumbered using

the 1620 Sequence Puncher Program. This program assembles

a new source deck that contains the statement numbering

20

(E/EE/ 2-5

sequence designated by the operator. Since the 1620

output card deck is unprinted, the IBM 557 Alphabetic

Interpreter must then be used to print the coded state-

ments on the punched cards. The numbered and printed

source deck is then used to obtain a final numbered

listing from the 7090 for inclusion in the Program Librory.

As an optional enclosure a Label Reference Index

can be prepared using a 1620 program written by Lt. Pratt.

This program assembles an object deck containing a list

of all symbols and the card numbers of every location in the

program which refers to each symbol. Due to the number

of symbols used in the AFIT Version of 1620 SPS additional

memory space was required and the School of Logistics

1620 computer facility, which has 40,000 spaces of core

storage, was utilized to assemble the program. A printed

listing of the Label Reference Index was prepared from

the object deck using the IBM 407.

21

GE/EF/62-5

IV. Methodolog

This chapter consists of two parts. The first

section describes the concepts, methods, and coding tech-

niques that were utilized to shorten the IBM SPS Processor

Program. The second part outlines the computer programm-

ing and coding techniques that were utilized to increase

the capability of the IBM SPS Processor.

Although these two areas of investigation will be

described separately in this chapter, they are closely

interrelated. The techniques employed in shortening the

processor program are equally applicable to the problem

of programming and coding conputcr rcutins to increazo

the capability of the processor. Moreover the recoding

procedure, which is used extensively as a shortening

technique, is also utilized directly to incorporate major

changes into the processor without the necessity of

adding complete new routines to the program.

Shortening the IBM SPS Processor

As outlined in chapter II, the function of the

processor program is to translate the symbolic language

used by the programmer in his source program into the

operating machine language of the computer. Since the

central limitation of the size of a source program is the

number of symbols that the computer can accept, there

exits a definite trade-off problem between the size of

22

GE/EL/6 2-5

the symbol table and the length of the processor program.

The essential feature of this problem is that the processor

program, which only performs the necessary translation

procedures, occupies a substantial amount of memory

storage sleze. The significance of the problem is illus-

trated in Figure 3 on the next page, which indicates

that the processor program occupiee approximately 17,500

of the 20,000 memory spaces available in the 1620 Data

Processing System. If the processor program could be

shortened by modification that would not alter the

capability of the processor, additional storage space

would be available in the symbol table for programming

longer and more complicated problems. The remainder o0

this chapter will examine the programming techniques util-

ized to modify the processor program.

The programming techniques that were applied to the

IBM SPS Processor Program were employed on the basis of

the followinz criterion: "Given a fairly efficient program

written in a straightforward manner, it is usually possible

to rewrite the program in fewer instructions, but the

rewritten program will require increased execution time."

In general however, the percentage of decreased space will

be considerably larger than the percentage of increased

execution time (Ref 4:2).

Since the limitation of memory capacity for the source

program symbol table is the most stringent restriction upon

23

GE/Eh/62-5

the SPS programmer, the processor program was rewritten

to optimize storage space and the penalty of increased

execution time, when it occured, was accepted. In many

cases, however, execution time was actually decreased

due to better programming.

Program StoraZ Addresses

Arithmetic Tables ------------------- 00000 - 00401

Input/Output Areas, Work Storage,
Constants ---------------------------- 00402 - 01779

Processor Program Instructions--- 01780 - 15403

Input/Output Areas, Work Storage
Constants ------- ---------------15404 - 15844

Operation Code Table (Mnemonics) ---- 15845 - 17516

Symbox Table --- --------------------- 17517 - 19999

Fig. 3

Storage Layout of 1620/1710 SPS Processor

Six different techniques were employed in shortening

the processor program. These were: (1) Recoding, (2) Op-

timum use of all portions of an instruction, (3) Redefini-

tion of origin to optimize storage, (4) Optimum use of

programmed switches, (5) Looping, and (6) Subroutine

formulation (Ref 11:2-6).

The application of these techniques comprised a

substantial portion of the thesis investigation; therefore

a detailed explanation of the techniques and an illustration

of their application to the IBM SPS Processor will be

presented in this chapter.

24

GE/IEE/6 2-5

The subroutine and looping techniques accomplished

the most significant results in shortening the processor

program. The other methods, although less important,

were useful coding techniques that were applied to the

processor and to the routines formulated using the

subroutine and looping methods. In order that the minosr

techniques will be recognized and appreciated when they

appear in the subroutine and looping illustrative examples,

they will be discussed first.

RecodinA. This technique consists of altering

instruction combinations that satisfy the logic of a

particular program or routine. It was possible to conserve

memory storagz by altering ""he particular logic and/ok

utilizing different instructions in a different sequence

to accomplish the same function.

This technique was applied to the routine in Figure 4

which used the last digit of the op--code field to branch

to the correct routine to process an instruction. These

routines accomplish the same function in both processors,

but the AFIT Processor utilizes 64 fewer spaces in core

storage.

25

(iE/EL/6 2-5

IBM PROCESSOR- AFIT VERSION OF 1620 SF5

OK TFN GOODB+6,BTBL OK TFM GOODI+11,1BTBL
'I'D GOODB 11,ZEPO+30 MD GOODB+11,ZEPO+30
A GOC'D8+5,GOODB+11 GOODB MM *+9954O,81O

GOOOB B 910 A GOODI+11,99
8 TRA GOODI TF GOOD2+6
DORG *-I GOOD2 B
D ADC DORG *-4
DORG *-I DSA MACRO
B MACRO DSA TRA,INSTB1,BNI
DORG *~-I DSA RDW9K
B INST BTBL DSA DSDNB,DAS,DC,DAC,
DORG *~-I DSA
B BI DSA DSB,LORG,DEND,
DORG *-I IIEADER ,MfORG
B f3NI
DONG *-
B RDW
DORG *'-I
B K
DORG *-
B DSDNB
DORG *-
B DAS
DORGi *-
B DC
DORG *-
B DAC
DORG *-I
B DSA
DORG *-
B DSB
DORG *-
B DOW,
DORG *-I
B DEND
DORG *-
B HEADER
DORG *-5

Fig. 4

Recoding

26

GE/EE/62-5

A second aspect of the recoding technique involves

the elimination of the asterisk address adjustment feature

from the majority of instructions in the processor. This

improved the readability of the processor and made

modification and coding simpler; however the number of

symbols required was substantially increased. The

following routine which handles the typed output for the

DSA statements illustrates the application of this techn-

ique.

IBM SPS PROCESSOR AFIT VERSION OF THE SPS

TYPDSA BNCI PCON TY-PDSA BNF PCON,PRSW

TFM *+471ZEPO TFM B45+ilZEPO

WATY CLERER+45 A22 WATY CLERER+45

AM *+23,5 AM B45+iI,5

TF TYPADD-l B45 T7 TYPADD-l

WNTY TYPADD-5 WNTY TYPADD-5

TF *+35,*-13 TF B47+1I,B45+ll

AM *+23,,I0 AM B47+11,1,10

BNR *+20 B47 BNR B46

B PCON B PCON

DORG *-3 DORG *-3

Optimum Use of all Portions of an Instruction. The

use of declarative statements and address adjustment allows

the assignment of constants and work areas within the

unused portions of other instructions.

27

(iE/ EE/ 62-5

IX,\MPLES: (X indicates an uniised position)

SPS UNOPTIMIZED MACHINE LANGUAGE

INS'I'RUCTI OINS

III TB''Y 34 XXXXX XO1X8

PICKUP)S 5,*-5

G30 H 48 XXXXX XXXXX

SEVENS DC 7 70707(7

, A4

BNC4 A4 47 WAT XO4XX

CNTR DS 2, *

In the first example the symbol PICKUP is assigned

a position within the unused portion of the instruction

TBTY. The five digit area occupies the P address of the

TBTY instruction.

In the second example the HALT instruction utilizes

only 2 of the 12 machine language digits, consequently

seven digits of the instruction are used for defining a

constant labeled SEVENS. The resulting machine language

instruction would be 48 0007070707.

In the third example the symbol CNTR is assigned

the location of the last two digits of the preceding

instruction, A one-digit constant could be assigned the

28

GE/EE/62-5

Q7 position of the instruction since thia space is also

unused.

Maximum use of this technique, particularly in the

modifications that were added to the processor, eliminated

unnecessary storage requirements,

Redefinition of Origin to Optiwize Storae. This

technique allows the unused portion of certain instructions

to be eliminated in core storage. All instructions in the

IBM 1620 are written in a 12-digit machine language format;

however, in certain instructions the Q or P address is

not used and a zero (00000) address is generated. A

.)ORG statement (Define Origin) can be used to direct the

processor to override its sequential assignment of storage

and begin the assignment of succeeding instructions at

the address specified in the operand of the DORG state-

ment.

The DORG statement can be used to eliminate the

unused portion of the Branch and Branch Back instructions.

B START

DORG *-3

0

0

BB

DORG *-9

The "B" instruction uses only 7 of the 12 digits in

the instruction format; consequently the redefinition of

29

GE/EE/62-5

the origin saves four positions of storage.

The BB instruction uses only 2 of the 12 digits;

this allows a saving of ten positions.

Although these are the only two commands which allow

this type of redefinition, and the IBM SPS Processor has

been written utilizing this feature, this technique was

applied successfully to all program modifications.

Optimum Use of Programmed Switches. The IBM SPS

Processor used an indicator set to 0 or 1 to branch

around those instructions that were not to be executed

during pass I or II. The switch, which was 0 during the

first pass, was set to 1 at the end of this pass to allow

execution of the proper instructions for pass II. In

the example that follows, during the second pass the

Branch on Digit (BD) statement causes a branch around

the instruction B LDLBL since at that time the program

switch EJS has been set to I.

EXAMPLE:

BD PRDS, EJS

B LDLBL

DORG *-3

PRDS BTM LINPRT, DODS

It was possible to optimize this programmed switch

by using a record mark in place of the I and utilizing

the Branch No Record Mark instruction:

30

GE/EE/62-5

BNR LDLBL, EJS

PRDS BTM LINPRT, DODS

This modification saves eight spaces, and since this

routine was used quite frequently in the processor, a

considerable amount of storage space was saved.

Looping. Looping is the ability to repeat an

operation. Loops within a computer program enable the

computer to return to an earlier part of a program and

repeat certain steps with different input data; this allows

the computer to perform long repetitious tasks with

relatively short simple sets of coded instructions and

consequently provides a means to conserve memory storage

space*

The open subroutine printed below provides an excell-

ent example of looping. This routine was added to the

processor program to clear the area labeled INPUT prior

to reading a statement from an input device.

GI5 TFIM SET,O,lO

TF INPUT-2,CLERER+9

TF INPUT+l0,CLERER+ll

TF INPUT+18,CLERFR+7

TFM AA2+6,INPUT+20

AA2 TFM ,910

AM AA2+6,2

CM AA2+6,INPUT+140

BL AA2

TYPE DS 2,*

BB

DORG *-9

31

GE/EE/62-5

The BL (BRANCH LOW) instruction creates a loop back

to the instruction labeled AA2 and allows the computer to

repeat that sequence of operations immediately following

AA2 as often as needed.

This particular technique proved extremely effective

and was utilized extensively in modifying the IBM SPS

Processor.

Formulation of Subroutines. A program which performs

identical functions at various points within the program

can be simplified by subroutining. Using this technique

a function is coded only once and referenced freely,

each reference affecting the program as though the function

were coded completely at the place of reference.

A subroutine is a short sequence of coded instructions

which performs a specific task. The subroutine is

normally executed several times during the course of the

main program and is incorporated into the program by a

single coded instruction whenever the operation performed

by the subroutine is desired. Since the subroutines are

only coded once, memory space is conserved.

The processor program was analyzed to determine if

additional subroutines could be formulated and considerable

shortening was accomplished by the use of this method.

In general, however, the original logic and coding had to

be changed in order to create tasks that could be performed

by identical procedures.

32

GE/EE/62-5

Figure 5 below is an example of two coded routinea

from the original processor that performed identical

functions with different input data and a slightly

different logic, and were designed to produce different

results.

LBADD TFM *+23, SYMTBL IT TF 0+23,SYMTBL

BD LBADDS BD SEIFIN

BTU EVALER,50000

DC l,-, *

LBADDS TF *+23,LBADD+23 SEIFIN TF *+23,1T+23

TD *+35 TD *+35

TF LABCOM+11, *-l TF *+71,*1

TF *+47, ,,0 AM *+59,,0

A *+35,*-1 A *+47,*-1

A LABCOM+I1,*+23 C LABCTRSEIFIN+47

CM COLL-17 BNE *+36

BNE *+36 C INPUT3

LABCOM C COIL-2 BE ER10

BE LABOK TF IT+23, *-13

AM LABCOM+ll,6,l0 AM IT+23,6,10

TF LBADD+23, LABCO/)+1l B IT+12

B LBADD+12 DORG *-3

DORG *-3

Fig. 5

Routines Designed to Search the Symbol Table

These two routines were recoded into a single sub-

routine which resulted in reducing the length of the pro-

cessor by approximately 100 spaces of core storage. The

routine as it appears in the AFIT Version of 1620 SPS

is printed on the next page.

33

GE/EE/62-5

IT TFM A63+11,SYMTBL

A63 BD SEIFIN

D33 B

DORG *-3

SEIFIN TF D24+11,A63+11

D24 TD D25+11

TF D26+11,D24+11

D25 AM D26+11,V O

A D26+11,D25+11

D28 D LABCTR,D25+11

BNE D27

D26 C INPUT3

D29 BE BB

D27 TF A63+11,D26+11

AM A63+11,6,10

B A63

DORG *-3

The subroutine technique can be extended to provide

an option to branch from a subroutine to any position of

a program rather than to the next instruction in sequence.

In this technique a Branch and Transmit Immediate

instruction is used to branch to the desired subroutine.

The Q address of the BTM instruction contains the address

to which the subroutine may branch upon completion.

Example: Assume that an instruction, BTM CKREC,

NASS, which is located in another part of the program,

causes a branch to the routine CKREC listed on the next

page.

34

GE/EE/62-5

CKREC TF BRI+6,*-I

BNR BR2,lNPUT+22

BRI B

DORG *-3

BR2 CM INPUT+22,23,10

BE BRI

BB

DORG *-9

As a result of this branch, the Q address NASS will

be stored in the CKREC-l position.

The TF instruction of the subroutine will transmit

the addres-s NASS to the branch instruction BRi+6

The subroutine will perform the designated checks and

depending on the results proceed to Branch Back or to

Branch to the routine located at NASS.

Several subroutines were formed in this manner and

a considerable saving of storage space was realized.

A third type of subroutine, the multiple ust

subroutine, also proved quite effective. This type of

subroutine permits a BTM instruction to branch to various

instructions within the routine, to allow execution of

only a portion of the subroutine.

An example of this type of subroutine is given on

the next page.

35

GE/EE/62-5

TABBY1 TBTY

TBTY

TBTY

TF G25+6,TABBYI-L

G25 B

DORG *-3

G5 AM ADDRS,5,I0

SPAT WNTY ADDRS-4

SPT1
BB

DORG *-9

The following Branch and Transmit Immediate instruc-

tions were used to branch to this subroutine:

BTU TABBY1,G5 which allows the complete subroutine

to be processed.

BTM TABBYI,*+12 which allows the three TBTY instruc-

tions to be executed and causes a branch to the instruction

immediately following the BTM instruction.

BT SPAT, SPAT-l which causes only the last portion

of the subroutine to be processed.

A total of six subroutines were formed utilizing all

of the techniques described in this chapter. This

technique produced the greatest reduction in storage space.

Processor Capability

The second major area of investigation was to increase

the capability of the SPS processor by incorporating the

necessary coded routineb or modifications into the

36

GE/kE/62- 5

processor program. Suggestions were available from many

sources, and ideas from my thesis advisor, reports-.from

the various 1620 Users Group Meetings, and my own coipupe

experience, were all used as a guide in modifying te

program. in the final analysis all modifications wese

based on my own judgement, the only criterion being ti

desired result - a flexible, useful, processor program

with an extended capability.

The problem of increasing the capability of the

processor program was essentially the problem of writing

a short computer program or routine to perform the function

desired. This routine had to define in complete detail

what the computer was to do under every conceivable

combination of circumstances with all information fed into

It.

The number of coded instructions required to perforim

a particular function varied according to the nature 01

the task. Since the computer executes instructions one

after another, it was necessary to include in the pro~rs

appropriate instructions to direct the computer to repeat,

modify, or skip over certain instructions, depending on

the intermediate results or circumstances.

The techniques described under part I of thjr ct- j,

were equally applicable to the problem of writing cjrrltte

routines. The subroutining and looping methods, combhned

with the other techniques of iodifving instructice-,

GE/EE/62-5

permitted a significant reduction in the number of inst-

ructions required to perform a specific function,

The general procedure utilized in preparing the

routines was: (1) Establishment of the logical program

segments to mechanize the operation to be performed, and

(2) Arrangement of the coded instructions to satisfy the

program logic.

It should be noted that this sequence of operations

was repetitive in nature since the peculiarities of the

machine logic often necessitated changes in the program

logic.

Six new routines were added to the program that

resulted in an increased capability for the procebouc.

These routines provided a means to (1) find the size of

memory, (2) perform an address check during pass II, (3)

include an additional operation code in the program, (4)

have the typewriter space over the seam in the paper

while listing, (5) reduce the time required to type out

a source statement, and (6) eliminate the necessity for

a record mark at the end of a statement when utilizing

typewriter input.

In addition the recoding procedure, which was used

extensively as a shortening technique, was also utilized

to increase the capability of the processor. Major

changes were incorporated in many routines in the IBM

Processor resulting in the addition of eight features to

the processor program,

38

GE/EE/62-5

NAST BNF G26,PRSW

TF LOPOUTINPUT-2
C LOPOUT,CLERER+9

BNE G16

TBTY

G19 PF LOPOUT,INPUT+1O

BD G17,LOPOUT-11

TBTY

ORDER DC 491,*-4

B G18

DORG *~-3

G16 WATT LOPOUT-8

B G19

DORG *-3

G17 WATY LOPOUT-lO

G1~8 TF LOPOUT,INPUT+18

WNATY L' POUT-6

BNR BSIINPUT+20

B A49

DORG *-.3

Fig. 7

Routine to Type Out Source Statement

Facing 39

GE/EE/6 2-5

The routine in Figure 7 gives an example of several

of the techniques described in part I of this chapter.

This routine was included in the AFIT Version of the SPS

Processor to allow the typewriter to tabulate (rather than

space) to the proper position for type out of a statement

if either the page-line field or the label field were

blank. The function and logic of this routine is indic-

ated in the flow diagram of Figure 6.

This routine is an excellent example of the trade-off

problem of space, execution time and capability. The

routine in the original processor accomplished the type

out of the! statement with fewer coded instructions, but

the method of spacing rather than tabulating when blank

fields were present was time consuming. To improve the

performance of the SPS Processor additional instructions

were added which decreased the computer execution time,

and resulted in a faster listing due to the increased speed

of the typewriter when tabulating. The increased storage

requirement imposed by the additional instructions was a

trade-off to obtain a reduction in the order of seconds

of computer execution time.

39

GE/EE/6 2-5

SW I -Yes -- 4,G26
Off?

No

Page-Line ___oTyp

Field Blank?l Page-line Field

Yea

No- Type
BlankLabe

FlowDiaramTfye Rotn:Tp-OpSuc ttmn

Co40

GEi/EE/621-5

V. Pro ram Checkout

This chapter will discuss the sixth step of the

programming process - checkout of the modified processor

program. This step is a major area of investigation,

constituting approximately one half of the total time

expended on the programming effort, and requiring thorough

knowledge of the operating procedures and techniques used

to analyze programs in the computer.

An outline of computer operating instructions, equip-

ment, capability, and program testing procedures is

included in the IBM Reference Manual A26-4500-2, titled

IBM 1620 Data Processing System. No attempt will be made

in this chapter to write a definitive study or repetition

of this manual; rather, a functional description of those

features that pi,,ved most valuable to the thesis investi-

gation will be presented. The remainder of this chapter,

which is divided into three parts - test requirements,

console operation, and debugging techniques - describes

these features.

Test Requirements

Adequate checkout of the modified processor program

depended on the test of the major individual routines that

comprise the processor program. These individual routines

were checked out by employing five phases of testing.

41

GE/EE/62-.5

(1) Typical flow of the processor, (2) Check of specific

routines that handled all instructions containing certain

classes of op codes, (3) Error handling procedures, (4)

Test of the specific changes and modifications to the

processor program, and (5) Final recheck of the complete

overall operation of the processor program.

The first phase of testing checked the typical flow

of the processor by utilizing a short source program of

known configuration to check the input/output routines

of the processor. A typical configuration of this short

source program is pictured in Figure 8 which shows a

listing of the program obtained at the end of phase I.

END 0F PASS I

01012 *STARTI 01023 CNTRh

* INITIALIZATION

D0RG 1000 01000

RCTY 01000 34 00000 00102

STARTI TFM CNTRI,0 01012 16 01023 U0000

CNTR1 DS 5,* 01023 00005

DEN]) START1 01012

END OF PASS II

Fig. 8

Test Program for Phase I

During Pass I checks were made to determine if (I)

statements could be entered from the card reader and the

typewriter, (2) error messages would be detected on correct

source statements, (3) symbols would be entered into the

42

GE/EE/62-5

symbol table correctly.

During Pass II additional checks were made to determine

if (4) the addresses in the statement operands would be

evaluated correctly, (5) the type out of the source

statements and the assembled instructions was correct, and

(6) an uncondensed object deck could be punched.

Major errors were encountered during this phase of

the testing and the debugging techniques described later

in this chapter were employed extensively. Further

checkout of the processor depended on establishing the

correct I/O routines in order that all additional errors

could be isolated to their respective routines.

Upon completion of phase I testing a check was

performed on the specific routines that handled statements

according to their class of op-code. The actual coding

of the processor simplified this test materially, since

only 17 routines process all 116 possible SPS operation

codes. These 17 routines are listed in Figure 9 with

their respective classes of instructions.

43

GE/EE/6 2-5

Routine Instruction

MACRO All macro-instructions

INST All arithmetic and internal data
transmission, some logic (Branch
and Compare) instructions

BI All Unique Branch Indicator ON
MNEMONICS

BNI All Unique Branch Indicator OFF
MNEMONICS

RDW Input/output instructions

K Typewriter control instructions

DC DSC and DC

DSDNB DS,DSS,DNB

DASDACDSADSB,DORG One reutine for each instruction

DEND,HEADER,MORG,TRA

Fig. 9

Processor Instruction Routines

All routines were tested by processing the appropriate

instruction; where one routine handled multiple instructions

one of each type was processed. For example: one

arithmetic, one Transmit Field, one Branch, and one

Compare instruction were used for testing the routine

labeled INST; a DC and a DSC were used to test the DC

routine. All statements were processed through the typical

flow of the processor using phase I test criteria.

Figure 10 shows the listing obtained from a short

program designed to test these instruction routines.

44

o n -c00-00-0 0000CO-"on
000 0 "N LniO C)0 0"---.- m
0 _o-o000 0-,-~- 000

30 100101000100O0O000 10100
0

00 -c oOOcZ-oo o 0 0 0--t er,%0 0 0 t0 r~- 0 0 0 0
c 00 00"0000000o

; U-,\"N -, Ln00-- - CoLWD. Jr-.-L.Ac\1XNnLn
0000000000000000000000N, -007
Coo~ ~ coo -z--lr--zr- 0000000000

,,o 0-D m 00 CC- M- c-T\. r-r--t o oY 0000000000 o

0 -- 0 MC'4T"--t MO 0 G0 Li f 0 0

0004 000000000 - -- mm - -t T0 0
- ~---r- ~ * t N 1 - - - - - ~-- - Y- -. N* t

00000000000000000000 0 0 =;000c

0-

=

-bf 4-)

HE 00 C

<

- W:!: Go(Un-) < zU

<zM M-~ MIZ :I: caO z

OC <H<< <~-0-
<O -HJ <HJ H - 0 - r~~ Ifl H

t4OL H < an0~ 00 0 0 < CDw Z

H 0 H

GE/EE/6 2-5

The third phase of testing involved checkout of the

error handling procedures. Statements containing one of

each of the 14 possible errors were processed through

the phase I test procedure. Where one error message

reflected multiple possible errors, each type of error

was processed. The test was designed to check detection

of the error, type-out of the proper error message, and

proper assembly of the machine language instructions based

on the error code. The listing of the program used for

checkout of the error handling procedures is shown in

rigure 11. Errors 9 and 13 were checked separately and

are not included in the listing.

The fourth phase of testing was devoted to checkout

of the specific modifications incorporated into the

program to increase the capability of the processor.

Checks were made to determine if they would actually

perform the function they were programmed to perform.

The specific routines that were checked are summarized

in the next chapter under results.

As the routines were being tested the operating

procedures that best incorporated the modifications into

the processor program were also determined. These proce-

dures became the operating instructions for the modified

processor.

Since numerous modifications were added during

each phase of testing, a complete recheck of the processor

was required during Phase V. All previous test programs

46

* INITIALIZATION
D0RG 1000 01000

STARTI TFM CNTR1 01000 16 C1248 0000
CNTRI DS 5, 1248 01248 00005
ENDS TFM STARTI,CNTRI,7 ER I

01012 41 oo000 0OOO0
END@ TFM STARTI,CNTRI,7 ER 1

01024 41 OOO0 ooOO
J C 10000*10000*100,START1 ER 2

01036 24 00000 01000
ENDS TA STARTI,CNTRI,7 ER 3

01048 41 00000 00000
ER 10

H A CNTRI,$1STARTI ER 5
01060 21 01248 00000

TF STARTED,SCAN ER 5
01072 26 00000 02285I A 123456,STARTI ER 5
01084 21 00000 01000

K A 806,STARTI ER 5
01096 21 00000 01000

TF STOP(,SCAN ER 5
01108 26 00000 02285

DSA A,B,C,D,E,F,G,H,I,J,K ER 6
01124 00005 62185
01136 00005 U2186
01148 00005 61735
01160 00005 61787
01172 00005 R1935
01184 00005 01986
01196 00005 62037
01208 00005 U1o60
01220 00005 U1o84
01232 00005 51036

DS0 15 ER 7
01684 00050

DC 52, ER 8
01734 00050

C DSC 52, ER 8
01735 00050

D DAC 52, ER 8
01787 00050

E DNB 52, ER 8
01935 00050

STOP DC 5 ER 8
01985 00050

F DSC 2, ER 8
01986 00050

G DAC 4, ER 8
02037 00050

A DC 4,12345 ER 8
02185 00050

A DSC 4,12345 ER 8
02186 00050

SCAN DC 5,123456 ER 8
02285 00050

DAC 5,STOP ER 8
02287 00050

STARTI TF STOP.SCAN 02386 26 O1985 02285
ER 10

HEAD - ER 12
TIP$ I STARTI 02398 49 01000 OOOOOER 14
TIP* B STARTI 02410 49 01000 O0OODER 14
TIP- B STARTI 02422 49 01000 O00OOER 14
TIP, I STARTI 02434 49 01000 0OODOER 14
123 B STARTI 02446 49 01000 O00OER 14

DEND START1 01000
END OF PASSII

Fig. 11

Error Handling Procedure Test Program

47

S NIT IALI7AT I1N
D', G 1000 01000

£TArTI TFiI CNTRIo 01000 16 01215 60000
TFi7 CNTR2,0 01012 16 01263 O0000
TFM A1+6,10000 01024 16 01102 TOOo
TFH 31+11,10001 01036 16 01119 T" 001
TFi A2+6,I0001 01048 16 01318 o001
TFL 12+11 ,10001 01060 16 0135s" Too0
BLC *+12 01072 46 01084 00,00

STAOT2 RACD AREAl 01084 37 0158S 00500
Al TR 10000,AREAI-I 010'i6 31 10000 01588
D1 BNR AREA2,10001 01108 45 01504 10001

AM CNTR1 ,1 01120 11 01215 00001
AtMt AI+6,2 01132 11 01102 00002
TF AREA3,B1+11 01144 26 01198 01119
AH 1+11,2 01156 11 01119 00002
DNLC START2 01168 47 01084 0ooo
TF AREA4,CNTRI 01180 26 01246 01215
RCTY 01192 34 00000 00102

AREA3 DS 5,*-5 01198 00005
DC 1,',*-4 01199 00001
CF AREA4-4 01204 33 01242 00000

CNTRI DS 5,* 01215 00005
WATY NIOTEl 01216 39 01749 00100
WNTY AREA4-4 01228 38 01242 00100
RCTY 01240 34 00000 00102

AREA4 DS 5,*-5 01246 00005
DC 1 ,,,*-4 01247 00001
CF AREA3-4 01252 33 01194 00000

CNTR2 DS 5,* 01263 00005
WATY N(TE2 01264 39 01787 00100
WNTY AREA3-4 01276 38 01194 00100
SM 1+11,2 01288 12 01119 00002
ROTY 01300 34 00000 00102

A2 WATY 10001 01312 39 10001 00100
RCTY 01324 34 00000 00102
RCTY 01336 34 00000 00102

02 BNR AREAS,10001 01348 45 01540 10001
C B1+11,B2+11 01360 24 01119 01359
BE END 01372 46 01564 01200
AMl 82+11,2 01384 11 01359 50002
TF A2+6,B2+11 01396 26 01318 01359
AM CNTR2,1 01408 11 01263 00001
T F CNTR1,0 01420 16 01215 O0000

A3 C CNTR2,CNTR1 01432 24 01263 01215
BWH A2 01444 47 01312 01100
SPTY 01456 34 00000 00101
SPTY 01468 34 00000 00101
AM CNTRII 01480 11 01215 O0001
B A3 01492 49 01432 00000

AREA2 AM B1+11,2 01504 11 01119 00002
AM A1+6,2 01516 11 01102 00002
8 B1 01528 49 01108 00000

AREA5 Al B211,2 01540 11 01359 0002
B 02 01552 49 01348 00000

END H 01564 48 00000 00000
B STARTI 01576 49 01000 00000

AREAl OAS 80 01589 00090
NkTEI DAF 1,NUHBFR ,F RECORDS 01749 00019

:4 TE2 ")AC 30,A[U VDS F FLINAL 'Er, PD 'ARK ('177 00030
1F4) TND kT 0100

E D F I I I

Fig. Ila

Phase V Overall Operation Test Program

Facing 48

GE/EE/6 2-5

were rerun and an additional program to test the overall

operation of the processor was assembled. A condensed

and uncondensed object program were punched and the

condensed object deck was used to process data. Figure

l!a is a listinr of this program.

Console Operation

The operator's console, which is an integral part

of the central processing unit, provides for manual and

automatic monitoring and control of the system. For

monitoring, the console provides small neon light

indicators that display the contents of core storage,

internal r -itcr , and the machine and orozram status.

The most important of these indicators are described

below.

The Operation (OP) Register indicator consists of

two lines of five lights each which display the bit

configuration of the operation code in the last instruction

executed.

The Memory Address Register (MAR) is a bank of five

lines of five indicator lights each which can display the

bit configuration of the address in any one of the eight

MARS registers. The MARS registers are non-addressable

intermediate storage positions that control data flow and

the addressing of core storage, and through the MAR display

bank provide a visual indication of the internal data flow

4 8

GE/EE/62-5

of the computer. The operation code of an instruction

determines the functions to be performed by the registers

and designates the particular register to be used. The

most frequently displayed registers are: (1) Instruction

Address Register 1 (IR-1) - contains the address of the

next instruction to be executed, (2) Product Address

Register 1 (PR-1) - saves the address of the next instru-

ction in sequence when the Save Key is operated, (3) Inst-

ruction Address Register 2 (IR-2) - saves the return address

when BT and BTM instructions are executed, (4) Operand

Address Register 1 (OR-i) - contains the Q address of the

instruction indicated in the OP register after the I - cycle

f th- ioptruction, and (5) Operand Address Register 2

(OR-2) - contains the P address of the instruction in the

OP register after the I - cycle of the instruction

(Ref 6:60,71).

The MARS Display Se lector is an eight position rotary

switch that permits selection of any of the eight MARS

registers for display in MAR.

The High/Positive (H/P) and the Equal/Zero (E/Z)

check lights show the condition of their respective internal

control gates as a result of the last arithmetic or compare

operation.

Control keys are provided for alteration of certain

machine functions and for convenient instruction entry.

Signal lights are associated with some of the control keys

49

GE/EE/6 2-5

to indicate which key was last activated.

The Display Mar Key causes the MARS register to

which the MARS Display Selector is set to be displayed

in the MAR bank of indicating lights.

The Insert Key places the 1620 in automatic mode

and activates the typewriter keyboard. This permits

numeric instructions to be entered into core storage

starting at 00000 and extending to higher numbered positions.

The Release Key terminates the typewriter input operation

and returns the 1620 to the manual mode.

The Stop/SIE Key stops the computer in the manual

mode at the completion of the instruction being executed.

Thereafter each depression of the key will cause a single

instruction to be executed.

The Instant Stop/SCE Key causes the machine to stop

while executing an instruction at the end of the 20-

microsecond machine cycle in progress. Further depression

of the key will cause the machine to step through single

machine cycles.

The Save Key saves the address of the next instruction

in sequence by storing the address in PR-1 (Ref 6:51-58).

Since the proper use of these indicators and control

keys depends on the mode of operation of the computer a

general understanding of this feature of the 1620 is

required. The most important points are summarized below:

The 1620 computer can operate in either the automatic

50

GE/EE/62-5

or manual mode. In the manual mode the computer has

terminated all operation and is ready to accept operator

instructions. When the manual mode is initiated the

Manual Light comes on and the program stops running.

This occurs after: (1) a Halt instruction, (2) a Stop

Key or SIE operation, (3) a Check Stop, (4) an Instant

Stop or a SCE operation (automatic light is also on), and

(5) depression of the Release Key to end a Read Typewriter

instruction or Insert operation.

The manual light is turned off when the Start Key or

Insert Key is depressed.

When a program is running the computer is in automatic

mode and the automatic light is on. This condition exists

during the following conditions: (1) when the Start Key

or Insert Key is depressed, (2) when a Read Typewriter

instruction is being executed, (3) when single cycling or

if the program was stopped in the middle of an instruction

by the Instant Stop Key, and (4) when running normally.

While the computer is in the automatic mode the Display

MAR, Save, Insert or Start operations cannot be executed

(Ref 12:16-17).

When the computer is running, the lights on the

control panel flicker. If the lights are not flickering

the computer is stopped and one of several possible

conditions could exist. If the computer stops running

without displaying an error indicator, these conditions

51

(iE/FEE/6 2-5

would normally be (I) a programmed ttalt, indicated by a

48 in the operation register, (2) the program waiting for

information to be entered, indicated by a 36 or 37 in the

operation register, (3) an illegal input/output device

specified. This is indicated by a 38 or 39 in the operation

register in combination with digits other than 01 or 05

in the Sense and Branch display indicator, or (4) a record

mark at an address specified for output data. If the

operation register contains an output code, a record mark

(bit configuration C-8-2) displayed in the Memory Data

Register would indicate an output instruction (WN for

instance) had addressed a record mark. As another poss-

ibility, the computer should be checked to see if it is

in automatic mode, since the system may actually be running

in a very short loop. A programming error that failed to

provide the proper conditional branch could cause the

machine to hang up in a loop indefinitely (Ref 12:11,15).

Indicator check lights are provided on the console

for monitoring the internal and input/output data flow of

the computer. These indicators are used to detect parity

errors within the computer and can stop computer operation.

A description follows:

When the computer stops because of a parity check the

Check Stop Light comes on. This condition is caused by

(1) Read Check (RD CHK) or Write Check (WR CHK) Light coming

on when the 1/0 switch is set to Stop, (2) Memory Buffer

52

GE/EE/62-5

Register-Even (MBR-E) or Memory Buffer Register-Odd

Check Light coming on when the Parity switch is set to

Stop, and/or (3) Memory Address Register Storage (MARS)

Check Light coming on; this causes an unconditional mach-

ine stop regardless of the Parity switch setting. When

the Check Stop light is on one or more of these indicators

that actually caused the stop is also on. Two other

means of stopping computer operation are (4) the Overflow

Arithmetic (ARITH CHK) Check light when the Overflow switch

is set to Stop, and (5) the Reader No Feed or Punch No

Feed Light (Ref 6:51-57), The use of some of these

indicators is explained below (Ref 6:51-57).

If the WR CHK light and either the MBR-E or MBR-O

light are on, memory has a bad character. If the RD CHK

light and either the MBR-E or MBR-O light are on a bad

character has been read into memory. When the MARS check

light is on, either a digit in MARS has a parity error

or there is an illegal 5-digit address present in the

register. A MAIS check will also occur if two Branch

Back instructions occur without a Branch and Transmit

instruction intervening.

Debugging Techniques

As indicated in chapter III, program checkout commences

when the modified processor object deck, which was assem-

bled on the 7090, is loaded into the IBM 1620 computer,

From this point the computer console is used in conjunction

53

GE/IP*/62-5

with the printed listing from the 7090 to checkout the

program in the computer.

The general checkout technique employed in this

investigation utilized standard 1620 operating procedures

in conjunction with the light indicators and control keys

located on the computer console.

The initial checkout procedure was to allow the

modified processor to process a short source program of

known configuration, the essential idea being to check

the typical flow of the processor program.

Operating errors in the modified processor program

were determined by allowing the processor to process the

source test program until a Check Stop forced a machine

halt or until an incorrect output was obtained. Using

this technique the majority of program errors encountered

were found to be attributable to two primary problems.

First, Transmit Field (TF) and Transmit Record (TR)

instructions, because of a canceled flag or record mark

in core storage, often erased a portion of the processor

proiram at another location. Second, modification of the

processor program for one nurnose often had hidden hiRher

order effects on some other process or routine in the

Provram. The remainder of this chapter will disctiss the

debugKinv techniques used to analvze the major ramifications

of these two nroblems.

The first of these problems restjlted in the frequent

54

GE/EE/6 2-5

occurrence of the Check Stop and consequently led to the

development of a general trouble-shooting procedure to

deal with program errors of this nature. Since this

procedure is a general trouble-shooting method and app-

licable to most SPS programs, the procedure is described

in detail below so that it may serve as a reference for

'the inexperienced trouble shooter. It is essentially a

compilation of standard console operating procedures that

have been modified to meet the requirements of this

investigation. The procedure is written from an operational

point of view so that the technique of applying the

standard console procedures as trouble-shooting aids can

be fully appreciated.

Check Stop. When the Check Stop Light comes on the

other indicator check lights should be examined to deter-

mine the type of check stop that occurred. Depending on

switch settings the RD CHK, WR CHK, MBR-E and MBR-O lights

should be scanned, and since the check stop is frequently

a MARS CHK, the MAR display bank should be observed for

content.

Scan the Operation Register. The operation register

should be scanned to determine the op code of the last

instruction executed. If the op code is invalid the

immediate cause of the check stop is known, but the cause

of the invalid op code remains to be determined. As

indicated earlier the most frequent cause of an invalid

55

GE/EE/62-5

op code was due to a TR or TF instruction that caused

data to cancel or replace the original instructions.

Determine Storage Address. The storage address of

the last instruction should be determined next. This

can be done by setting the MARS Display Selector to IR-1

and pressing RESET and Display MIR, Before pressing

RESET the other indicators such as H/P and E/Z should be

examined since they will be turned off by the RESET key.

Now observe the address appearing in the MAR bank of

indicator lights and subtract 12 from this number. The

result is the address of the last instruction executed.

Determine Stored Data. The actual data located at

the address just computed should be printed out on the

typewriter for comparison with the listing. The procedure

for printing storage data on the typewriter is as follows:

(1) Press Insert, (2) Type 35 XXXXX 00100 where XXXXX is

the storage address just determined. This causes data

starting at XXXXX to be written numerically on the type-

writer until location 19999 is printed or the release key

is depressed. Occasionally it is desirable to start the

type out at an address preceding the desired information

to determine the extent of any erroneous field that may

be present, and (3) Depress Release and Stop to execute

step (2) (Ref 6:59).

Compare Actual Data and Listing, The data that was

printed out on the typewriter should be compared with the

56

GF;/EE/6 2-5

machine language instructions on the listing, If the

fields are not identical, the SPS statements on the

listing should be analyzed to determine which instruction

may have caused the erroneous field to be present at this

particular location. If this can not be determined from

the listing trouble-shooting will have to continue as

described below.

Isolating the Error. The simplest way to isolate

the instruction causing the transfer of the incorrect

data is to insert a digit with bad parity into the

location receiving the incorrect data. When a TF or TR

instruction attempts to trnnsfer data into this location

and the Parity switch is in the Stop position, the bad

character will cause a check stop.

The basic procedure is as follows: (1) When the

Check Stop occurs display lU-I and determine the address

of the instruction last executed, (2) Press Insert and

enter a bad character (H) into an even numbered storage

position located in the instruction just determined, and

(3) Reprocess the last statement; when the Check Stop

occurs, the address of the TF or TR instruction causing

the transfer of incorrect data can be obtained by dis-

playinz IR-I and determining the address of the last

instruction executed.

A slower, more time consuming method for isolating

an error is simply to process the statement through a

57

GE/EE/62-5

portion of the program before examining the location being

altered. In this manner the approximate location of the

instruction that is causing the transfer of incorrect

data can be isolated.

A useful technique is to use the typewriter Program

Alteration and Data Entry procedure to insert a Halt (48)

instruction at selected positions in the processor program.

Statements can now-be processed normally; when the computer

stops because of the Halt instruction, the statement can

continue to be processed, one instruction at a time, by

use of the Stop/SIE Key. The area being altered can now

be periodically examined by the following procedure which

accomplishes a type out of the stored data and a branch

to the next sequential instruction: (1) Depress Stop/SIE,

Save, Insert. The address of the next instruction in

sequence is saved in PR-i by depressing the Save Key.

(2) Type 35 XXXXX 00100 42. (3) Depress Release and Start.

Step 2 is executed and the data in core storage starting

at XXXXX is typed out. (4) Depress Release and Start.

The type out is halted, a Branch Back (42) to the address

saved in PR-l is executed and processing resumes (Ref 6:59).

Error Correction. When the statement causing the

error has been isolated the erroneous data in core storage

will have to be corrected. If much of the processor

program has been canceled, the processor should be re-

loaded into core storage, A few instructions can best be

58

GE/EE/62-5

entered from the typewriter using the Program Alteration

and Data Entry procedure: (1) Press Insert. (2) Type:

36 XXXXXOOI00, (3) Depress Release and Start. The computer

executes step 2 which instructs the computer to read

numerically data entered from the typewriter into a

location starting at XXXXX. (4) Type the correct data

and press Release (Ref 6:58). All error corrections

should eventually be entered on patch cards if the proce-

ssor is to be reloaded at a later date. Major modificat-

ions will probably require correction of the SPS source

deck and another assembly of the processor object deck

on the 7090.

Reprocess the Last Statement. The statement which

caused the Check Stop light to come on should now be

reprocessed., The simplest procedure is to return to the

location in the program where the Check Stop occurred.

This can be done by pressing Insert, typing 49 YYYYY, where

YYYYY s-tands for the storage address of the last instruc-

tion executed, and then depressing Release and Start. If

major corrections wer, made in the processor, however,

the test program may have to be completely rerun.

Miscellaneous Techniques. Several debugging techn-

iques that are quite useful, but were not systematically

employed in the general trouble-shooting procedure are

described below.

The P and Q addresses of an instruction can be

59

(iE/EE/6 2-5

displayed on the MAR indicator bank by: (1) Depressing

Stop/SIE key until the instruction that contains the

desired address is next. (2) Depressing the Instant

Stop/SCE key eight times and then Reset once, (3) Turning

the MARS Display Selector to OR-I and depressing the

Display MAR key, The Q address which is in OR-I is dis-

played in the MAR bank, (4) Turning the MARS Display

Selector to OR-2 and depressing the Display MAR key. The

P address which is in OR-2 is displayed in the MAR bank

(Ref 6:59). In most cases it was simpler to print the

core storage data out on the typewriter using methods

previously described.

A technique for deterrmining a branch from a loop

routine was helpful in isolating errors in the processor

program. The result of compare and arithmetic instructions

can be determined by observing the H/P or E/Z indicator

lights. If the Stop/SIE key is being used to process a

statement one instruction at a time, execution of a condi-

tional branch after the compare or arithmetic instruction

can then be anticipated to determine the completion of the

loop routine. For example, a Branch Equal instruction

after a compare instruction would be executed if the E/Z

indicator light came on during the compare instruction.

Another useful technique is the procedure to determine

whether a program has branched to a subroutine. Since

the IR-2 register is normally blank and is used for the

"BB" address, if this register contains a valid address,

h)

(GE/EE/6 2- 5

the program is probably somewhere between a BT and BB

(Ref 12:15). As illustrated in chapter IV, however, some

subroutines function without using a BB. In that case,

even though the program was not in the subroutine, IR-2

would stili contain an address. Consequently IR-! should

be displayed first and if this address proves to be in a

subroutine, IR-2 would then tell where the subroutine was

entered from.

Let us now examine the second major checkout problem

which concerns the higher order effect of modifications.

The effects of this problem were primarily reflected in

incorrect outputs that were many times removed from a

speciiic modification. The generai troubiu-shooiing

procedure just described was extensively employed, but

modified for the specific errors being investigated. Many

minor errors were encountered, but the modifications that

had the most far reaching effects are described below.

Modifications that incorporated the ability to enter

a symbol during: the second pass presented major trouble-

shooting problems. By a series of related instructions,

the original modification resulted in an incorrect output

for all macro instructions. A detailed step by step

analysis of this routine revealed that the operation of

a single instruction transferred the wrong information

into the area that was to be typed out for the listing of

the assembled macro instruction. Further analysis

61

indicated that an output work area, that had originally

been performing a different function for each pass, was

now being forced to accept data for both functions during

the second pass. A redefinition of the work area corr-

ected this particular problem.

Major trouble-shooting problems also arose due to

the alteration of the ro(utines to search the symbol

table for equivalence. Incorrect error messages were

typed due to the alteration of program logic within the

routines that branched to the subroutine searching the

symbol table, After extensive trouble-shooting the

program logic was modified and the errors were eliminated.

A third major problem arose due to the alteration

of the routine that effected a branch to the proper routine

for processing each class of instruction. The immediate

noticeable effect was the incorrect type out of the

assembled instruction during a listing. Investigation

revealed that a change of the individual entries in the

op code table was required in order to provide op code

fields compatible with the modifications in the routine.

f 2

GE/EE/62-5

VI. Results, Conclusions and Recommendations

The improved IBM 1620 SPS Processor with its reduced

memory storage requirements and its increased capability

as outlined in this chapter has been designated the AFIT

Version of 1620 SPS.

This chapter is a summary of the features and changes

that have been incorporated into the AFIT Version of the

1620 SPS Processor. These modifications are the result

of the application of the techniques described in chapters

III, IV, and V to the IBM 1620 SPS Processor Program.

A complete detailed description and operating instructions

for the AFIT Version of 1620 SPS are included in the

appendix.

Results

Two new macro instructions that were written by

Lt. Pratt and added to the IBM 1620 SPS Processor now in

use at the Institute of Technology have been incorporated

in the AFIT Version of 1620 SPS. These instructions are

designated (1) INC - Input Conversion, (2) OUTC - Output

Conversion and provide for the conversion of floating

point numbers from the internal form to the external form,

and vice versa.

The following features which have been incorporated

into the AFIT Version of the SPS Processor were outlined

65

GE/EE/6 2-5

and partially coded by Lt. Pratt. Analysis, modification,

and complete checkout of the procedures were performed

by the author to consolidate the program and to secure

compatible operation of the indicated routines with the

AFIT Version of 1620 SFS:

1. A new pseudo-op designated MORG, which allows the

programmer to exercise more control over the addresses

assigned by the processor, was added to the program.

2. A record mark is not required at the end of a

statement when utilizing typewriter input.

3. After 60 lines of typing, a skip over the break

in forms wili be accomplished by the execution of six

carriage returns.

4. The AFIT Version of 1620 SPS will automatically

adjust itself to the size of memory; therefore, no

modification of the processor card deck is required when

additional storage is provided by the IBM 1623 Core

Storage Unit.

5. The IBM 870 Document Writing System can be used

to make an SPS listing from an SPS object deck. The

format is similar to the typewriter listing on the 1620

console, Although this feature had been incorporated

into the SPS processor now in use nt the Institute of

Technology, the procedure was modified and recoded and

the ability to preserve the page-line field was incorporated.

64

GE/EE/62-5

6. The error message "adjustment count" has been

renumbered to start at one instead of zero if an error

occurs before a label has been defined,

The following features are the routines and procedures

that were analyzed, coded and checked out by the author

for incorporation into the AFIT Version of the 1620 SPS

Processor Program:

7. An additional error check has been added and the

error 10 message has been redefined to account for this

check.

8. An undefined symbolic address, as a result of

misspelling or omission, can be defined during pass II

and placed in the symbol table. Detailed error correction

procedures have been included in the writeup of this

feature.

9. The effects of errors on the assembly process with

program switch 2 OFF have been altered for error messages

1,3?5 and 11.

10o The symbol table is printed at the end of pass I

rather than pass II.

11. With switch I ON for a listing on the console

typewriter during pass III if either the page-line field

and/or the label field are blank, the typewriter will

tabulate rather than space to the proper position for

type out of the statement, In addition a space is inserted

between the page-line field and the label field during

65

GE!EL.!6 2- 5

type out of the listing.

12. When a source deck is being punched during pass

I and statements are being entered from the console

typewriter, if switch I is turned ON to complete entry of

the source statements from the card reader, the last

entry from the typewriter will be punched in the source

deck being prepared.

13. The procedure for the use of switch 4 to punch

an object program has been altered.

14. If the processor is halted during either pass

for any reason, it is possible to branch to the beginning

of pass I by pressing RESET, INSERT, RELEASE, and START.

15. Complete operating procedures and instructions

have been included in the writeup of the AFIT Processor.

Conclusions

The AFIT Version of the 1620 SPS Processor Program

is a significant improvement of the IBM 1620 SPS Processor.

Fifteen additional features have been added and the operating

procedures have been altered to provide increased flexibility

and convenience. The Processor has been shortened 699

spaces resulting in an extension of the symbol table from

2482 to 3181 memory storage spaces. This constitutes a 28

per cent increase in the size of the symbol table. Complete

checkout of the program has been accomplished and detailed

operating instructions have been prepared that should allow

66

(GE/EE/6 2-5

this program to be utilized at the Institute of Technology's

1620 computer facility at an early date.

Recommendations

The AFIT Version of the 1620 SPS Processor Program

is not compatible with the IBM 1620 subroutine deck.

Although it is estimated that only minor modifications

are required in the subroutine deck, completion of this

work would greatly enhance the value of the AFIT Processor.

The computer facility at the Institute of Technology

has recently been modified for several special features

including indirect addressing. It may be possible to

recode the SPS processor utilizing the indirect addressing

feature to save considerable memory storage space and time.

This possibility should be investigated and accomplished if

feasible.

The final checkout of the processor revealed the presence

of three undesirable features. These features can be eliminated

by several minor modifications to the processor program.

These are discussed below.

Unnecessary typewriter carriage returns and tabulations

occur during pass II with switch 1 off in the type out of

error messages 6, 7, and 8. The neatness of the listing is

not affected by this typewriter operation and the addition

of two instructions to the program will eliminate this

feature.

During a listing on the console typewriter the storage

67

GE/EE/62-5

addresses of the symbols defined in a DSA (Define Symbolic

Address) statement are not consistent with the designated

length of the symbols. It is believed that a coding error

in the output routine for this class of instructions is

responsible for this inconsistency.

In the Load Label routine during pass 1, if an ERW)

address check is not indicated the label is again loaded

into the symbol table. Since the symbol would have already

been entered during pass I, this is an unnecessary duplica-

tion and computer execution time can be saved by recoding

the routine. This modification can be incorporated by

altering card number 26585 in order to cause a Branch Equal

to D34 rather than GlL.

67a

GE/EE/62-5

Bib iog Sphy

1. Albright, Eugene L. "Mod I". Proceedings 1620 Users
Group, Midwestern egion. Pittburh, May, 0-h6T

2. Albright, Eugene L. "A Caution to SPS Users",
Proceedings 1620 Users Group, Midwestern R .on*

May, T -.

3. Evans, G. W., and C. L. Perry. Programmin and
Coding for Automatic Digital Com--t7rs. New-rk:
McGraw MHil,79,9-1

4. "Further Notes on lPortran and SPS Subroutines".
Minutes of the Meeting, 1620 Users Group, Eastern
Y2Q-n Wahng ton,D5. Z 7.,AprT, TT61.

5. IBM 1620/1710 Symbolic Programming System. Reference
auaiC26-5600.7 Whfte-pNens, Ner- : International

Business Machines Corporation, Data Processing Division,
1962.

6. IBM 1620 Data Prcessing System. Refreence Manual
A-4T- .-WEIteP Pains --M York: International
Business Machines Corporation, Data Processing
Division, 1962.

7. IBM 1401 Data Processing ystem. Reference Manual
151- 4- -W- it .- s, New York: International
Business Machines Corporation, Data Processing Division,
1962,

8. IBM 407 Accounting Machine. Reference Manual A24-1011-1.
W-t-e--tainsN New York: International Business
Machines Corporation, Data Processing Division, 1959.

9. IBM 870 Document Writin System. Customer Engineering
a-u-a-oT-Ttrc-ton. Wh7-e-lains, New York:

International Business Machines Corporation, Data
Processing Division.

10. Leeds, H. D., and G. M. Weinberg. Computer Programming
Fundamentals. New York: McGraw-HilT- 1961,

11. Leeson, Dan. "Illustrations of the Flexibility of
SPS". Minutes of the Meeting, 1620 Users Gro,
Eastern o. Washington, D. C, Tpri

12. Lewis, Neil. "An Informal Supplement to the 1620
Manual". Minutes of the Meeting, 1620 Users Group,
Western R . LThos AngeTes, October, T-I

68

GE/EE/62-5

13. McClure, Charles W. "Morg". Proceedings 1620
Users Group, Midwesternent g1-a _y, 1 VT.

14. Pratt, R. L. Fortran Compiler - Precompiler.
Reference Pamph-e .Air F-- ce Ins tit e oi7
Technology, n.d,

15. Pratt, R. L. New Macro-Operation for SPS.
Reference Notes_ T Force Ttute of Technology,
April, 1962.

16. Pratt, R. L. Operatin Instructions for the IBM
870. Reference Notes. ATTr- I st-tuteoT
Technology, Spring Quarter 1962.

17. Sinanian, Ed. "Construction of an Assembly System
with Emphasis on SPS". ProceedinKs of the Second
Meeting of the 1620 Users Group, East-er-egion- .
Bostn, toer7--6T

18. 1620 Ohio State Assembly Pro ram. Reference Manual.
The Ohio State University, Numerical Computation
Laboratory, 1962.

69

GE/EE/6 2-5

Appendix A
Facilities and E ent

Appendix A contains photographs and descriptions of

the facilities and equipment that were used in the course

of this thesis investigation. Extensive use was made

of the 1620 computer facility at the Institute of

Technology, and the 7090 computer facility of the

Analysis Branch, ASNCDA.

70

GE/EFE/62-5

Fig, 13

1620 Data Processing System

The IBM 1620 Data Processing System is a small

scientific compnuter designed for universities and small

engineering consultant firms. The AFIT facility houses

two units - the TBM 16l20 Central Processing unit (which

contains the computer, 20,00() positions of core storage,

and an 1/0 typewriter) a'nd the IBM 1622 Card Read-Punch

unit which is available for card 1/0 operations.

71

GE/EE/62-5

Fig. 14

The IBM 7090 Data Processing System

The IBM 7090 Data Processing System is a large scale

high speed scientific data processing system. Input is from

tape prepared in an off line card-to-tape prepared operation

on the IBM 1401. The 7090 was used to assemble the modified

processor program. The output was the SPS source statements

and the ass'embled instructions written on tape to be listed

off-line on the IBM 1401.

72

GE/EE/6 2-5

-t t

Fig. 15

The IBM 1401 Data Processing System

The IBM 1401 Data Processing System is used as an

auxillary system for the IBM 7090 Data Processing System.

This unit receives the tape output of the IBM 7090 and in

an off-line operation controls the IBM 1403 Printer and

the IBM 140. Card Read-Punch output media which have res-

pective rated outputs of 600 lines and 250) cards per minute.

The 1401 is used to obtain a printed listing of the S'S

source statements and their assembled machine language

instructions, and a processor object card deck,

73

GE!EE/6 2-5

Fig. 16

The IBM 870 Document Writing System

The IBM 870 Document Writing System is a data transfer

device. The AFIT facility houses the 836 Control Unit

for use as a card punch, and one 866 Non-Transmitting

Typewriter for use as an output listing station.

74

GE/FAI/6,2 -5S

Fig. 17

The IBM 407 Accounting Machine

The IBM 407 Accountinv Machine prepares printed list-

ings from IBM cards. The 407 prints 18,000) characters a

minute and reads TBM cards at the rate of 150 per minute.
This unit is used to obtain a listinvg of the processor

prooram in standard SPS format.

7.5

GE/EE/62-5

Appendix B

AFIT VERSION OF 1620 SPS

Contents

I. Introduction

II. Description of the Program

III. Program Configuration

IV. Operation of the Processor

V. Operating Procedures

A. Changes to the IBM SPS Operating Procedures

B. Operating Instructions

VI. Error Handling Procedures

A. Changes to the IBM SPS Error Handling
Procedures

B. Error Messages

C. Error Corrections

VII. Modifying the Processor for Additional Storage

VIII. SPS Listing on the IBM 870

IX. Control Operations

X. Macro-Operations

Xi. Miscellaneous

A, Additional Features

B. Operation of Program Switches

C. Flow Diagram Changes

76

GE/EE/62-5

AFIT VERSION OF 1620 SPS

I, Introduction

This writeup is intended to serve as a reference

text for the AFIT Version of the IBM 1620 Symbolic

Programming System. It is assumed that the reader is

familiar with the data handling methods and the functions

of instructions in the 1620 Data Processing System.

This information is available in the IBM Reference Manuals,

1620 Data Processing System, form A26-4500-2, and the

IBM 1620/1710 Symbolic Programming System, form C26-500.

II. Description of the Program

The AFIT Version of 1620 SPS is an improvement of

the IBM 1620 Symbolic Programming System. A detailed

description of the specific modifications is included in

the body supplement; for convenience the principal

improvements are summarized below.

1. The size of the symbol table has been increased

from 2482 to 3181 spaces of core storage. This constitutes

a 28 per cent increase in the size of the symbol table.

2. An SPS object deck can now be listed on the IBM

870 in a format similar to the typewriter output listing

of the 1620 console0

3. Symbolic labels on all statements can be defined

and placed in the symbol table during pass II as well as

Pass I.
77

(;E/kEE/62--5

4. The effects of errors on the assembly process

with program switch 2 off have been altered for error

messages 1,3,5, and 11.

5. 'Two new macro instructions designated (1) INC-

Inout Conversion, and (2) OUTC - Output Conversion have

been added to provide for conversion of floating point

numbers from both the internal form to the external form

and the reverse.

6. A new pseudo-op designated MORG, which allows

the programmer to exercise more control over the addresses

assigned by the processor, has been added to the program.

7. Typewriter input, output, and correction

procedures have been altered to provide increased conven-

ience and flexibility.

8. All operation codes that were exclusively for

use with the 1710 or for paper tape input/output have been

eliminated from the program. Most non-unique input/output

instructions have also been omitted.

III. Program Configuration

This program has been written for the IBM 1620 Data

Processing System with 20,000 digits of core storage and

for use exclusively with the 1622 card reader punch. The

program automatically adjusts to the size of core storage

and is compatible with the 1623 Core Storage Unit.

This program utilizes no special features but is

78

GE/EE/62-5

compatible with a computer which has these special features.

The program as of this writing is not compatible

with the IBM 1620 subroutine deck. It is anticipated,

however, that only minor modifications in the subroutine

deck will eliminate this discrepancy.

IV. Operation of the Processor

The AFIT Version of the 1620 SPS card processor is

a two pass program. The input for both passes is provided

by a source program written in the symbolic language of

the SPS.

The two major changes to the basic functions of the

IBM SPS processor during pass I and II are: (1) The

symbol table will be printed at the end of pass I rather

than pass Il, and (2) Symbolic labels can now be placed

in the symbol table during pass II. The functions of

pass I and II are described beLow.

During pass I the processor (1) checks mnemonic

operation codes for validity, (2) prepares a table of

symbolic labels and their assigned addresses for use

during the second pass, (3) assigns storage positions

in memory to constants, instructions, and work areas,

(4) performs error checks on the source statements and

produces error messages, and (5) prints the symbol table,

if desired (Ref 5:79).

79

uE/EE/62-5

During pass II the processor (1) processes the operation

codes by converting the mnemonic codes to their 1620

machine language equivalents, (2) Processes statement

operands according to the type of operation code. Looks

up assigned storage addresses and their symbolic operands

in the symbol table that was prepared during pass I.

Performs address adjustment, rthen required, to complete

the operands. Examines the flag indicator operand and

sets flags in the assembled instruction, (3) processes

corrected or newly defined symbolic labels and places them

in the symbol table, (4) types error messages for those

statements that are unable to be assembled properly, and

(5) prepares the assembled output (Ref 5:79).

The operation of the processor is described below:

Pass I input for the processor may be from cards or

the console typewriter. The card deck can be used for

both passes, but since only card input is allowed for

pass II, typewriter input to pass I requires that a

source program card deck be punched as an output to

pass I to serve as an input to pass II.

Error messages are typed out for both passes. The

typewriter output for pass II may consist of the object

program with error messages, or error messages only, as

determined by the switch settings indicated in Figure 12,

The output of pass II is an object program card

deck in either condensed or uncondensed form (see Figure

12 for switch settings), The condensed object deck contains

8

GE/EE/62-5

machine language instructions only, with up to five

instructions per card. The uncondensed deck contains both

symbolic cards and machine language cards for each

statement. Both the condensed and uncondensed card decks

contain the loader and arithmetic tables.

After an uncondensed object deck is obtained from

pass II a condensed deck may be punched immediately by

processing the source cards a third time (see operating

instructions). If the third pass is omitted a condensed

deck can be obtained from an uncondensed deck by use of

the Condenser Program (Ref 5:82-83).

V. r Procedures

A. Changes to the 2peatin Procedures. There are

four major changes to the operating procedures for the

IBM 1620 SPS. These are:

1. A record mark is not required at the end of

a statement when utilizing typewriter input.

2. With switch 1 ON for a listing on the console

typewriter during pass II, if either the page-line field

and/or the label field are blank, the typewriter will

tabulate rather than space to the proper position for

type-out of the statement. A space is inserted between

the page-line field and the label field during type-out

of the listing.

3. After 60 lines of typing, a skip over the

81

GE/EJE/6 2-5

break in the forms will be accomplished by the execution

of six carriage returns.

4, The procedure for the use of switch 4 to

punch an object program has been altered.

B. Operatin& Instructions.

1. Clear Memory (this should be done whenever

there may be digits in memory with bad parity).

o, Set all check switches to PROGRAM.

b. Depress INSTANT STOP and RESET.

c. Depress INSERT.

d. Type 16 00010 00000.
(12 digits, no spaces or punctuation)

e. Depress RELEASE and START (or the R/S
key).

f. After the MAR lights have cycled through
memory at least once, depress INSTANT STOP.

g. Depress RESET.

2. Load the SPS Processor Program.

a* If the computer is not in manual mode,
press INSTANT STOP and RESET.

b. Set the OVERFLOW switch to PROGRAM, all
other check switches to STOP.

c. Clear the card reader by removing any
cards in the hopper and pressing READER
STOP and NON-PROCESS RUNOUT. Then remove
all cards from the stacker.

d. Put the Processor deck in the reader hopper,

e. Depress LOAD.

f. When the reader stops on the last two cards,
depress iEADLR START.

g. Remove the cards from the read stacker,
check for the last card, and put the deck
away*

82

GE/EL/62-5

3. Set the program switches as indicated in

Figure 12 (Ref 14:8-9).

4. T zIewriter Operation. During pass I1, with

program switch I ON, the typewriter types each statement

alphamerically starting at the left margin. After the

last character is typed the typewriter tabulates to the

place where typing of the storage address and the

assembled machine language instruction should begin.

Statements are typed in the format entered except that

there is a space between the page-line field and the

label, and before and after the operation code field. If

either the page-line and/or the label field are missing

the typewriter will tabulate to the proper position to

continue type-out of the statement (Ref 5:91).

The typewriter will. type 60 lines of output and then

execute six carriage returns to skip over the seam in the

paper.

To set up the typewriter, the operator must:

a. Set right and left hand margins.

b, Set tab stops 6,13, and 56 spaces from
the left margin. (Note: positions 6 and
13 are fixed. Position 56 may be varied
to locate a position a few spaces to the
left of the longest statement),

c. Set paper in the typewriter three lines
(three single space carriage returns)
below the top of the page,

5. If typewriter input is to be used, the card

punch must be readied to punch a source program card deck

83

GE/EE/62-5

as an output for pass I.

ao Clear the punch by lifting the cards from

the hopper and pressing NON-PROCESS RUNOUT°

b. Discard any cards that are in the stacker.

ce Load sufficient blank cards into the hopper.

d. Depress PUNCH START (Ref 14:9).

6. Processing the Source Program

PASS I. After the processor is loaded the program

halts. Processing starts when the first statement of the

source program is read into the computer and START is

depressed.

Typewriter Input:

a. Type statement.

b. Depress RELEASE and START keys.

c. Repeat steps a and b until all statements
are entered.

Card Input:

a, Place source program card deck in the
read hopper and depress READER START.

b. Depress START. Processing proceeds
according to the setting of the program
switches.

c. When the reader stops, depress READER START
to read the last two cards.

The message "END OF PASS I" is typed out at the end

of pass I and the symbol table is printed. The operator

may supress the symbol table type-out by turning program

switch 4 ON while the message "END OF PASS I" is being

typed. The program halts after type-out of the symbol

table (or when switch 4 is turned ON)to allow preparation

84

GE/EE/62-5

for pass II as described below.

PASS I1. The source program card deck used in

pass I (or the one punched during pass I if typewriter

input was used) is used as the input to pass 11o

Card Input On ly:

a, Put the source deck in the read hopper
and depress READER START.

b. Set program switches for pass I (see
Figure 12). Switch 4 must be ON to
punch an object deck.

c. If an object program is to be punched,
ready the punch as outlined in item 5
and depress PUNCH START.

d. Depress START to begin processing.

After pass II is completed the message "LOAD SUBROUTINES"

is typed out if subroutines are required by the source

programs. If the subroutines are not required the message

"END OF PASS I1" is typed and the program halts (Ref 5:92).

Loadin the Card Subroutines:

a. Place the subroutine card deck in the
read hopper and depress READER START.

b. Depress START.

If the subroutine deck being loaded is variable length,

the message "ENTER MANTISSA LENGTH" is typed and the

program halts. The operator must enter the 2-digit mant-

issa length (which may range from 02 to 45; a mantissa

length of 08 does not have to be entered) from the console

typewriter. Processing is resumed by depressing RELEASE

and START. The programmer must insure that the number

85

GE/EE/62-5

(length of mantissa) is correct, but program switch four

may be used to correct an erroneous entry. (see Figure 12)

Only those subroutines needed by the source program

are punched out as part of the object program. After the

subroutines are processed the imessage "END OF PASS 1I" is

typed out and the program is completed (Ref 5:92-92),

7. When the message "END OF PASS II" is typed

out, the object deck, if one was being punched, is also

complete. The object deck can be removed from the punch

by the following procedure:

a. Lift the blank cards from the punch hopper.

b. Depress the NON-PROCESS RUNOUT key for
a few seconds,

c. Remove the deck from the stacker and
discard the two blank cards at the end
(Ref 14:9).

8. Assembling Other Programs. Upon completion

of pass II, a condensed object program deck can be obtained

by:

a. Turning program switch 3 ON. (Other
switches are set according to Figure 12),

b. Placing the source cards in the read
hopper and depressing READER START and
PUNCH START.

c. Depressing START (Ref 5:93).

VI. Error Handling Procedures

A. Changes to the Error Handling Procedures. The

86

followin, is a list of the significant differences concer-

ning error message and correction techniques between IBM

1620 SPS and the AFIT Version of' 1620 SPS.

1. An additional error check has been added

and the error 10 message has been redefined to accouit for

this check,

. The error message "adjustment count" hs

been renumbered to start at one instead of zero, if an

error occurs before a label has been defined.

3. An undefined symbolic address, as a result

of misspelling or omission, can be defined during pas-s

I1 and placed in the svmbol table.

4. The effects of errors on the assembly process

with program switch 2 off have been altered for error

messages 1,3,5, and 11,

B. Error Messages. The error message codes that

may be typed out on the typewriter during pass I and/or

I1 are identical with error messages of the IBM 1620

SPS except for the modification of error message 10

described below.

ERIO

a, A duplicate label is defined (defined more

than once) - Pass I and Pass 11.

b. Incorrect address - Pass I1. The a ddress
in core storage as assi.ned in the symbol
table during Pass I differs from the
address present in the address couinter
when the statement was processed during
Pass U1.

87

GE/&E/6 2-5

As a result of this modification if a card is lost

from or misplaced in the source deck between pass I and

pass II, an address check comparison will cause type-out

of error message code 10 during pass II. During pass II

this check is made only when switch 2 is OFF. A multiply

defined label that is not corrected between pass I and

pass II will cause an error indication during pass II.

In the AFIT Veroion of 1620 SPS Error Messages have

the following form:

ADJUSTMENT ERROR
LABEL COUNT CODE

XXXXXX + XXXX ERn

Where Label refers to the last defined label and

the "adjustment count" refers to the number of statements

between that label and the statement in error. If an

error occurs before any label has been defined (for

instance on the first instruction) the LABEL field is

blank and the number in the "adjustment count" is typed

out, This number is one on the first instruction (rather

than zero as in the IBM 1620 SPS) and goes up by one

for each statement processed.

C. Error Correction. Error correction procedures

are similar to the IBM 1620 SPS, but there are two

significant changes which increase the flexibility of the

processor. The first change, which is described below,

is the ability to define a symbol during pass II.

88

GE/EE/62-5

The SPS processor places symbols in the symbol table

during pass 1. However, if through a typographical error

or omission a symbol is still undefined at the end of

pass I, the processor will accept a definition of the

symbol during pass Il.

During the second pass, the addresses of the instruc-

tion operands are evaluated. If the address is symbolic

the symbol table is searched for equivalence, and if the

symbol is not found it is undefined and an error message

(ER 5) is typed.

With program switch 2 ON, the processor stops after

typing the error message so that the undefined symbol can

be entered into the symbol table. The procedure to define

a symbol at this time is described below:

1. To define a symbol during pass II it is

necessary to determine the address of the statement from

which a label has been omitted. If this statement has

been processed and listed on the typewriter, the address

of the unlabeled statement can be read directly from the

storage address of the assembled instruction.

If the unlabeled statement has not been listed, the

symbol table listing and the program source statements

prepared on the SPS coding sheets provide a means to deter-

mine the address of the unprocessed statement.

In this case the procedure is to examine the coding

sheets to determine the number of intervening instructions

89

GE/EE/62-5

between the nearest defined label and the unlabeled

instruction. The address of the unlabeled instruction

can be designated by using address adjustment with the

symbolic label of the nearest instruction, or by

adjusting the storage address of the nearest label as

determined from the symbol table listing.

If the undefined symbol had been misspelled rather

than omitted the address of the unlabeled instruction

does not have to be determined. The procedure for

defining symbols under both of these circumstances is

explained in the next step.

2. If the undefined label was omitted from

an instruction, type the following statement: LABEL

DS, XXXXX, where label is the undefined symbol and XXXXX

stands for the address, symbolic or actual, of the state-

ment from which the label has been omitted.

If the undefined symbol had been misspelled rather

than omitted, the following technique can be utilized:

Assume, for example, that many references are made to

the symbol FABLE, but the defining statement lists the

symbol as FABEL. This can be corrected by typing the

statement FABLE DS, FABEL. This will cause the processor

to define the symbol FABLE to have the same address as

FABEL and to enter this symbol into the symbol table

(Ref 1:4-5).

90

GE/EE/62-5

A similar procedure can be utilized to define the

labels of declarative statements at areas following the

last assigned storage space in the symbol table.

Determination of the last assigned address can be made

by examining the symbol table listing (which was typed

at the end of pass I) to secure the address of the last

defined label.

3, Remove the remainder of the source deck

from the reader hopper and depress NON-PROCESS RUNOUT.

4. Insert the unprocessed cards and the state-

ment for which the error message was printed in front of

the unprocessed portion of the source deck and place in

the reader hopper. Depress READER START.

5. If no object deck is being punched (switch

4 OFF) depress RELEASE and START.

6, If an object deck is being punched (switch

4 ON).

a. Depress RELEASE.

b. Turn switch 4 OFF.

c. Depress STOP/SIE once.

d. Turn switch 4 ON.

eo Depress START.

7. The symbol with its defining address will

be placed in the symbol table, the statement that conta-

ined the undefined symbol and the remainder of the

source deck will be processed.

91

GE/EX/62-5

The second change concerns the effect of errors on

the assembly process. With program switch 2 OFF, the

processor does not stop for an error correction, but

the errors affect the assembly process. The changes

to the IBM 1620 SPS processor are described below:

ER I - A NOP instruction, 410000000000, is assembled.

If the record mark is in the op code field the label, if

non blank, is placed in the symbol table. If the record

mark is in the label field the label is treated as a blank.

ER 3 - A NOP instruction, 410000000000, is assembled.

The label field, if non blank, is placed in the symbol table.

ER 5, ER 11 - Only the symbol in error is assembled

as a 00000 (zero) address; the remainder of the operand

is evaluated and assembled for output.

VII. Modifying the Processor for Additional Storage

The AFIT Version of 1620 SPS automatically adjusts

itself to the size of memory; therefore, no modification

of the processor card deck is required when additional

storage is provided by the IBM 1623 Core Storage Unit.

VIII. SPS Listing on the IBM 870

The IBM 870 can be used to make an SPS listing from

an SPS object deck. The format is similar to the type-

writer listing on the 1620 console except for the

following exceptions: (1) a flagged zero is typed as

92

GE/EE/62-5

a +, (2) the flagmed digits 1-9 are typed as J-R,

respectively, and (3) the first digit of the page-line

field is not typed.

To facilitate operation of the IBM 870 for this

purpose the object deck card format has been altered in

the AFIT Version of 1620 SPS. The page-line field on

object deck cards punched by the APIT processor has been

changed to provide: (1) The number "6" in the first

column of a source statement card, (2) The number "9"

in the first column of a numeric instruction card.

In order to save the first digit of the page-line

field (located in the first column of a card) for a

listing on the IBM 407 the page-line field has been

further altered as follows: (1) The first digit of the

page-line field on the source statement has been placed

as the second digit in the page-line field on the numeric

card, and (2) The second digit on the source statement

card (which is identical on the numeric instruction card)

is preserved in position. Since the IBM 407 control

panel can be wired to replace the digits in their proper

position in the page-line field an unaltered listini can

be obtained.

The operating instructions for preparing an SPS }isting

93

GE/EE/62-5

from an SPS object deck on the IBM 870 are as follows:

1. Clear all cards from the Machine.

2. Insert the SPS drum card and lower the star wheels.

3. Make sure the "SPS list control panel" is in the

machine.

4. Turn the Auto Feed switch ON.

5, Insert the deck to be listed in the hopper.

6. Make sure blank paper is in the typewriter, and

the carriage is in its leftmost position.

7. Press the FED key twice.

8. The listing will begin. To stop before it is

finished, use the same procedure as for other types of

listing. After the DEND statement and its associated

address have been typed out, the listing should be stopped

and the rest of the cards removed. If these cards are

allowed to list, most of them will simply pass through

the machine without listing, but some of them may cause

erroneous listings. In addition, this takes extra time

(Ref 16:2-3).

IX. Control Operations

A new pseudo-op designated MORG has been added to the

AFIT processor. Through this operation the programmer is

able to exercise more control over addresses assigned by

the processor.

94

GE/EE/6 2-5

This pseudo-op instructs the processor to define the

origin to be the next larger multiple of the given operand.

An example is given below:

DORG 4140

BB

MORG 100

X DS 5

The MORG pseudo-op defines the origin to be 4200

and causes the next sequential instruction to be loaded

in this position. In this case the symbol X would be

assigned the address 4204 (Ref 13:1).

X. Macro-Operations

Two new macro-operations that were written by

Lt. Pratt and added to the IBM 1620 SPS processor in use

at the Institute of Technology have been incorporated in

the AFIT Version of the SPS processor. These are used

for conversion of floating point numbers from the internal

form to the external form, and vice versa. The two

macro-operations are called by using the names (I) INC -

INput Conversion, and (2) OUTC - OUTput Conversion. These

names appear in column 12, just as with other macro-

operations (Ref 15:1).

XI. Miscellaneous

Additional Features. The following features which

95

GE/E/62-5

were not present in the IBM 1620 SPS have been added to

the AFIT Processor.

When a source deck is being punched during pass I and

statements are being entered from the console typewriter,

if switch I is turned on to complete entry of the source

statements from the card reader, the last entry from the

typewriter will be punched in the source deck.

Extensive labeling has been accomplished. Use of the

address adjustment procedure was reduced, thus increasing

the number of symbols in the program. This was done to

improve the readability of the processor program and as

an aid to modification and recoding.

Operation of Program Switches. The operation of the

program for the AFIT Version of 1620 SPS is outlined in

Figure 12 on page 97. The twe major changes are (1) Switch

4 has to be ON to punch an object program, and (2) with

switch 2 on the procedure for correction of statements

containing error messages has been altered.

96

0 ~

o0 0
t 02 Q9 C C

0 C0 v 0. *mc4)
0F V S4 o(

;0% 0v L, ow 0
4 0 ca44g

SI I U.
0) CC O Q6

0 04) 0 -0 &4 . 0

c CE1 (A. C 0O W04
0i (A 4J to.E- 0 AC

*4.al. CL at o owc 414)g
* 1 S c1V 0 .C 0 Q . L

C to. L4 15 39 4)a)1.0

E 0Cw 0 *40 , W A 4 0 Qu to
~ 0 P4VS..0 4-j0-90

O ~ ~ t Lor0 0 W)0J ~~ 1V '
0110 W 0 A4 -1 (4 C IA

ooa C CL a . u o 3t cn 0 a Vh ~0 4)
0 >.A 0 C CO W W t. 01 om A C

I4-0 4-) ~.0U -1 cc C.64 w 4) sm 00 0. 0

hr Ua c) 0 -o 4 0 go &

C w.1. 0 o CC 0-40 0 .c SoC Z -i
C50V C) EE ~ *h .

-C 0ESLS0m cc P-4 u
0D 4' ~ S 00. 4)(Cs.I 0

so.004. 0~ 4S C '4 00 C4 0 0 C

06 A1 41 51. 4)F A0 -i (
E-o .4 0 .) 4 I u.I~ 0.0 6

U2V 0 0 C.0 C. 0 = 0 04.0

4 41 h04'0 :00-1 C it$.'oP
1: oa.o1 s. 4-uC 0 El Lo E- (A

so 4. "OE@S 0 0 "0 [-S0
0 .0O 0 c 0 to.. 4OCI PC

*) 0SE .~ (44 w1.1 -c ." o

V 50 m ,0S 0 CL) +4) 0 +) 4

x. 4bC 0. C h- 1 l6 E 0 c1Mn
, 0 Q = +) It --

I~ I

97

GE/EE/6 2-5

Flow Diagram ChanKes. The principal changes to the

flow diagrams for the IBM SPS Processor are in (I) the

input routines, (2) the routine to load labels into the

symbol table, and (3) the DEND/TCD routine. In addition,

since the symbol table can now be entered during pass I1$

all routines proceed to the Load Label routine rather than

to pass II as indicated en the IBM SPS processor flow

diagrams. Consequently except for the flow diagrams in

Figures 18, 19, and 20, if the symbol PASS II is changed

tc read LOAD LABEL on all IBM SPS processor flow diagrams,

the diagram will be compatible with the AFIT Version of

1620 SPS.

98

GE/EE/62-5

Init 1) Initialize Init 2

Pass I W No QiiDI
Yes

Z::Tv
Read Statement
From Typewriterl

I

T
Read

Statement
From Card

Record'Mark
ea

S'
ecroin Label orop CoOP Code Areas

Yes

Not
Is Statement
A Comment

Yes < rNo-Yes#(Pass

tN o

If Switch I If Switch I
in on Type is on Type-Out
Statement Comment

I -
OP Code in
Table

No

YeNs
Branch to
Proper
Operation:]

Fig. 18

Input Routine Flow Diagram

99

GE/EE/62-5

(Load Label Label No Pass e a CP-a-s -s1-
Presen I

No

Read

< ILAa e I I
Yes

ass
Yes

T b

ile No
No

Swite Yes Read
2
n

No
ror

oyeM7
[Is Label

Address Equal
Address Counter
ji, I

Yes In Yes No -K-E-r-re-r-)
Label
Table
ille

+Noo

Put Label Yes Pass I
and its
Address In as sffD
Table

No

Read

Fig. 19

Load Label Routine Flow Diagram

100

z 0
Ag A I

L2 ala

rm

i'44

og
Lp. 44 4

z 4A

0 S

* 0
zp

to
op4..

0 a 0

4',0
o 0w

0 a 0

600

0 =

101

GE/EE/62-5

Appendix C

Label Reference Index

Appendix C contains a printed listing of the Label

Reference Index object program that was assembled at

the School of Logistics 1620 computer facility using the

IBM 1623 Storage Unit. The printed listing was prepared

from the object program using the IBM 407.

The Label Reference Index is a list of all symbols

in the processor program and of all card numbers in the

program which refer to each symbol.

102

cfl . Il- c In u)

10 - N 44

- C- r- NI N

'D N~ N r, 0 N-

.-- N N iN

4 -N NN 01I

INC01 fN 0~nc (jN

\ N ' -o0V

cO NU 4Ju,1
-- nj N N -

LfL CNNrU' P4r
.l- - NN0 - -

sti it- r- it pc 0 c

.? -40. r, I N4

N co 4 co C N t, In
N - - N N N - -

~N0 C7 r m0 - -zN ,c ~0C
cc c I r-c -n 4 44 N

N (\--"N N N N - - -.

it 1 r it' .s% it'. u p0 X p it. tr sp it nt LIt Ln sl i' it it
N-C N N mm4 1- NO C, .0I rC c '- 01 N
Nc'4N al .t4t N- In' .0 c; cc -. c c

44 N -i r\) m n 0'o
N N -- - - N N- N~

itititstr L pit .C5.l it'it'ipiosIn'n Lnt't'it' P. tit'PtS it

oo m C - c 0 V, m rN m N 0 m44 4 4 0 0 00. - 0 M 0O C) C- -
- - - ----

D i 0. of I N 4 'r, 'c CO In, m NT rN 10 r
4 < cr10 uJ j -j N t~ cN mr

n tT in'sIm..-., r ~NJ4 N C 44 0.0.r.,0-N 4'm 0 vO ' -,r

m .- Nc\'

103

oo

Nl

0)o

N -

m V'

r-0 0

A4 coN

4)o N N , '
U'rlIt 4 N

%14 mI(I N In4 10 C,-r
r- r-c t Q -P - -%

U' U' itU tU' UU11 'l

N' IN 4N N q '
NrUN U i r f L ,pu l rU i t .0 LP P .40SU rrU r CU PnL U
-CK P-- O- 0--N d N(- 00 D 0DO - I-I1 1

a, co m. Nl k' 00 C)4 0 a,' 0N

N .0W N (i m I (1, 54 U''4 N'Y4W N0i l 0 z CU r,% U' m0 N
N 4N Nmr r v1 " t NC N N N %J N

'oU'U' 0 r-U 00 34 -*I 0 0 N -t 10 C"C I. . z tr-
m m't't N t;.0 4 f. 't ~ 4 M % NoU m t-,'o o 'o '-4 P.-0- 0 U w -' m w CNj

r- r ir N N -- N)N NIN N N.0 0, m .-. ' N m - -

410

r.- 4n

10.

%A in Af IAt n

CIA -0 c0 4 (N - -
M M0 10 O 0

N Nj - .4 - - - -

LnA 0 S(~ n NIin A ' 0 l 0 nIA UNW 0' 0 (P o 00 '0 A LOCI WW. n0 U 0 0 4n 0- c,
CD 0~ n .0 4M 44 N -% D 3DCO0 N U)0%r-M IA.0M .00 M JP 0 0N- 0%~ 01a ' 0'O'

A4 N N - 4 01- 3 - -N .4 n - W Woo4 - - * .' 46%O- .41 t
4

in 4-,4 t P

Z V) (N o N 0 c o r- D O-Nlw' a,' 0- 4 (1)co 0 0~f 0 l0 0 -1
cr -4 w I.-1 NNNNN N N t4'C' 1)C"M) 44 4 4 4 IAI

'N .- 4IA0-- .4N f %N n4 4 '0.0 0 o r- p- W4 v41A 0 0N 4 4 o ;4 0' IDI -
-4r .. MI-fn 0 44 & t4 -44' 4 0 0 0 0 POO .0.0 .oi N' r W 0, C),

105

~1
.0

0

I 7 N
10 * O'N C

0o to-r

ON N Go N NO 01 - 0C)LI At

0 Lr ~ LM'0 aL 0 .v ' 0 O 0 a a 0 c f- T4 10 O
0 0 C0OCONIccc 000--1 - - - N - "C NN Mr. M~~ rmm"f 04
-IJN lN WN i SN-,N NN C N N N N N -N N r vN NN -. NNi - NN N vN

m "4u0 - 0 .-. N P'Df- m -N m 4 o '0 r- MC 0 .t, 4 ' 0 NC" 01OgLn'0 4

r- ' 4P- Ol V, 0 -- N 0 4 Do 0"' r-t' m '~ m = m0 ODC 0 N(0 A S00

. C.NINN N N N N N NNNNN ft zN N N N N.CN NN m*JJ, NN

106

ul

C' I

11 r-j

-It0 C'

,i"

40 0 L

10~~. (4CIIf

CN N oI

rIji. N' "It m IN

4f IC" LA UN -' u

I'0 QJ N0 uiu c

i' NiO - 10I' ~
NIN N~ NN N

C., m4 ~ 00 r
cci PI .o

a, T N Nl -0 Nc t

m- N
N

if' U., -,' 4If
N. N0 NO 0l ~ ct,0

C F.'. in- C . 0'7 r 4c D0 f) CDI o o l na 0ar c 1c

'0 4o 1,Ct 0, if 0I -f In ' I D P44 N
- N N - -i N

Or- - 4 'C-~f - iNC'f 0c a 00'CO Ot,,' 0 C 4

Kco 100lJcCl oN " Ir -D CLr f-
.c'-n0 4N .4 IT 0uC--.l- .- '- Cr"t -7I-- OIrl 0 loIc ,C- o N

CC ~ t CCC C m 'CCCC~ i i UL.iAL UL iU~ i i i i LL L cc; CCr c! N m

107.

U(&AtrL tnn o A Ln

NO OQ'I No' on A

0 N4Lrr- O; -4LnAD

-l -O''r - N 4-oN 1

10 NJ NLAr- O-4 f'
- - -- (N N N N4

Ln LL LALn A LLA UU)ULA0r
Os 'N 4 4C C) n ri 0Ln
o aCc'CN CC a, 01
10 NN 'Lr 0 4

-~ NmN N N

LA LA lA LA LA nA L A NLA
(1 N CIJ z-'- :: O * U a L) C)
O' - 0 '0 -' 4N r
LA (N 'L , O-44LA a ItITIf

- - Ir C, " N Ni

10 r.-C - - I (c ''i L -l -I

O' ~ ~ 1 4 '0NN(40 O4

LA LA% U W LN AALr w L ALA n ' L L r
co 10 r- r- !- mosl V) C a, NLIA c l

LAus r LA O'0 N c '. NL m C*"n 7 1)
a, It 4 n C(N0 40 n0-I 4 LA 10
- - - m N vtj(& i N

(L LA LAs LA) uLALJ LAU't U LL n LAL UC.' n
OD m"0 LA% Cjn0 c-O ('o P-N LA UO

LA - .r I 4 LArsA. In'O LA 7

- -- - (NN CNN 14 (. -

LAI LA%0U LA Al UAU L L L LALALALAw L ALA L ALA L A 1%n L LA LA
co 'C LA N CC 4 tAo 'C m r- w0 4 LnI N O'N - occ
LA C" co'O C r- 1 10 01 m MCC- C C".C 'CL LA U.C -0 I c
'0 Nl CD Nn 0' M' -.(.- 410 0 - 4L X%) LA: LA
N - N~ - N - CN N. I % (IiN 1 - -j N

0C'f omw w0r- 0 -N - NOKN- rLA -% 4 m - NO ac % %"A a Z-4 0C- - r4LA

0-. -N MNNN. N -NC4'C -0 c 4L 0C% vmm UN W,

NNN ll .. (ID~ NN-N w- a- 0 NmpC%0JN(N0 V V

0(C"4LA' 0 0 O0 0 0 0 Q -1.exO 0 X -'-- .

U%- -- - A (N N W% N N tN o" LA 0' n '-A Zn Zn to ZL
-, ,

(ALAL 00L cLALLLL MAAAAAAAAAAf GI LAL L-ALA -4 1 l0 0 t LA
GDO O 5 ' N A ~ " ~ ' C' - OD o, w' w- LA -r- l0L " NN

(NN-C- --- -N - -, - - 2-

108

N0 D I 0 NO0
N)0 oD 1

'0 N~ Nco 0 C
4

(\ " - t\Nr~

U'l m T D 0, 0 LA
- D Ncljl 01 a)'-

N0 N~ N C, 0 Ucc

lo N) NNj 0'I r- 3Dco
N N1 NN - .- C4N

N 0 04 N- -TN I

'cj 0'l NU' NN,-4

N -r NN n-nLIr lulL

a,(t- cc - o U'D N.j- m
0 0' 0 00C 0 01 ' OD U'r

'C (C - (NU Ul Nrr (I(
Nl M N N N

'C 10 4 Nj 1N(- ' 4 4 -D Nc

10 U' 'c) N 0N In (CI It 0 (C4N(

N~ -j N NN - - - mN

z) . a 0' ~-~ N m ., 0 C) 04N inr '0

10N U' Nc uC - 4 It (C (c4((14n r

N~jN .-4-' N N -N- N NN N .~ l 4

ItN'C0 0 IT 4 r- '0' N, -. CD 0 v, 0'.l-- U' 4
CON(Nc (CN0 coNC" -(I - 0 N f W U'U' N4 0' Cl m
'C'CeCm 4 N.-N'C0 .- 4 (. kf * 4C U' QD-c. 0 -c
NN-4N - -- N N N - - N- -CN -4 - N

C",- ' c 4j C"-' 4C It 0 'C 71 NC m ac10 r N 4 mrP 0 m " -

1C0C' 40m . . N 'r, 0 - 4 N It m -T 0 (C1 4' cc mC U' cw

0N- 0 - -N4a,- NN N c0 - - -041 N NIl1 t-r N 4 m N -l Q C

%0Ni -1 -4(11N 040 0N N r n4MN NNNN 4 4 M M D V N- M -00aD c

OfN N L

tm 'C en< .m i z z ZWJ ,vM it,0 X uV) 0 0 J4
< Co (C 0 0. >4 >- C.J < ZL <40Dlzz0

N ~ I~~ M NOO.-'0.--I--o C)N O" 1N r. 1. (ao 0 N O'
NIjf N cjmN. - N N.- -

109

0

o I-

m N l-3

o '0 n(n1

10 n

N N N l

00 NN N- a lCD l MN

.0j 0N - l 4 N -y

4Z-4 t ,4 -f tm4 c 0 t-
N . a, f l 4 N3 4 yI 0Ul(n0 - 10

NNj N (jN1 N -

0 U'%rL n LI) L l .tu i. LA. Uu) v Ln x Cr f ir) r
n W Pa cj7 I 0 00- 0, 0' W 'na 0 N 0'.

0 T T 4 - 0 % 0 I 0 ON m4 0o
N 00 C4C rCA Cf0 4Nj C

4
j (nL IC"o - '0

- N - -I NN - N - -

CA AAO L% N Ls LN v-.O Lr% 4 00L oL l l I f
-)o - u% - 0. 0 4 0 m0 - 4 'Dcr. 14

NI 0' 0'4 Nl Nl 0 N 4 4 04mr 0'- N0
- - -N - N - N - -N -N -- N

u-. LAIAu f Ln P I A CA Lr NU~ %w vA IAC 0 it. l nnL LACA a CI U
ODN n 1 N -U CAD NQ nr VQD N-nN' 4 cp t1 N -. 00"C - ' 0 0

N'0 r 0 0cc r N 6- o4 0 .0 O0 '0Cre I N.0C ' c c~r. 14 co(1 1)o
Nl 0' 0' N Nlc)c~ c C N 0 c"'Um'4 10 a mr C D 0)M -10- 10 I

-~~~~ - N - - N N .4 N

on V0 0 -C) A - 0 04c U . o-- '0C 00 <0 N! -cxyX
a LM Iaw xww wI wm4 m 0' C) 0, 4N -. '04 An WL ,wWV O0- 1- . .

N~)r 1 r4 0 0 c-N N,0 0 N 4' '. - .3
n I- -O -GI N N DN - --- N - N - - .-

NN cm "' - N j - N N N . N - .-NNtcj N ON - -

- . Z 0) ~N110 C

N w jN) c-mZ r- N aDQDN 0 0

O O C0 n It ' ON 'l c
cm, 0 N jN - N 41

3N N OD ,cN 4' r't' - 0' o'
0 olID Irl o I r-0 c c aD m I-f
w C c c 4 4 o'N)Lj 41 In

,j ~~N - N .) N - -jN

0 ~ ~ -C 0-D o mcf-NX N 0, '

x 0, 00 .10N r 0
m~ N N N -N N - -

aO 00 34 ITN It - N co 0

NNj NN r, -' N N--

f-f. 'cf I flLlr n r)Inf cf-cf. A ncf ci'L ru

:' a) C o-C 3, mroo 0 c)f-.O - uf-
r 4 oo ' z O 44 O'N r- -'N r-C D

-- 4N NN 1 IN N x) 1

mf- O N N f- f- f- 14r C- N

-7 r- '0 44 14 ccfl - cfc -- m 0l

40 cO 'T '-Tf f-- ' CCf C

4 N f--' -'C Jf - '0 \0' CC

c0 ' f-'CCO' t'0 44) cft c- '- (,) c '0
-- N ccc.N NN m ' N N.0 N -l c

mi co 4r O'l: 0 0 'ON .1I ,N nf f-- f-C

Nj - mN NN -N NNN- NJN.-.

If r1' cf- ci' .1)cf c~'f' s) If cf.If r ' f 'n FI n C cC' uCci I f c'.

f\ C' 0f''N~0 CD 3-'0 0 M"c0p'N0n0 0 'C0 c1i'
le c~JN- N1 -1 It-' NN m N - -' N.

N r'0-- 'T .- O~ NO' m Go % (7- cf- c cOO wf.- z wCi 4C 10 0i'% N O

'C , ,c' 4 10 (1 T 7 m c t'.c~4~I CO' (70N4 4 c 0 14 "4' 0 - - 30C co o10
NI N N (1 N -- -N-. N N N -N N -~. N - N --

CIO mC~. aCC .jU

(-'oC AICC N~ i 0' CC 4D (71 r. ' -4 mww C Nm4A 0 , 'n mci' J o 01

N~lN' N -. -j

.c~~ cN Mc N N z\r~NN-

0 vz w LJLjw c c 00. coLi L111u

Nn c~ r 40' t-ID en M0 0' W * m
)D I 0 m40 0 .D 0 In r- 4 M f o 0 21r0
IN P MN~ i' - m(40 r r- 00 (44 MN -
N -i N N 4 -~ .- N N N1 - l

m0' NyO' N 4 04((4 C) P - OD 0 0'
'-4 01 N 0.O 10 NLrr- 4~f .l 0 %D N

4(44 1'..0 in .D f- r- 00 c 4o m 0 Go
IN NJ N L . - -4. -- NM N

LI, .~ n 0 l- 4 0. INo'm4 * N10 't 10 ('0'

0 3 4 -1 M r- 4 N4 r- 4(4 .n 0 10 0m
4(4 n 4 4.0I I N 10 r- r- oo COO M .0 N 0
Nl Ii I - N04 4. -44 -. 4 N N -

UN 4(4 O'O m40 00 m o J' Go (4 - N
O ~4 r- (44 4. I I0 44 U (.0 10 0' 0' 4

n t 4 N4(4ul N 1O r- - w0 w 4 .l 1 0 t(4 N r
N - (N - ----' N N4m1 N -

4 4 ON (11r- 0r- 0 1 .- It .0 3INOW 4 - -

N IN .00 (7.Lf4fn. 4.10 4) U'% TN ON 0 0' 44c I
D 4 NN ND r- p- w0 w 4m. 00 10D N P

N- - - .4. IN N NN l N -

4(4 L r it' 414f' r(4(u 4144(4. 4(44(L 4 U d4S)4r IN& nT.)L) LI t
44. 0' .N D a, 0 Or- cc) 0 U(4 I In U iUM 0 -

NJ - 4(44(4 9 N(4 4o) .0 CC, l 44 1 4' U.N - 0' o
It 4 1 N4i Na 44r- Go W 4 m 0O'0 4(4 N1 In4

N-N - .. 4- - - N 14- N N -

4(4n n LnnU 4(4 A(4 4 4(Ut 4(U.n(414 4(4(4(4 a, pUA' n P
V)4 W ON U'i(0. j Lr 0 .- 0 01 4 1 D(It(4 Ul
0o 0- itn4 M C m N 10 m. It CID Lm0 4 0 0'

- 4 N4 D 04. 'D - 00W N 0 10 N N(
N- N .14 IN 14. N .N 4'

N0 - r 4 mm444 40 r-U 0n710 (4 m mN 4 IN 0' 4140o
or- NO 0 .0o0C . (3 N. 'o f.4 - 4(0 N 0 1-- (0 0

m 4 N(4 m 0 Z-'o 0 f- r- 00 07' o'.0 N N - in 44
N - N - N N --" - - - N N - Nv - N

to4 4AA(4 l V A0 A 4IN A(4(LA.1 4(4(U U.4U Ini(U"%(i14(6(N 4n in
0 -l a,4 c'0 N %44m-A 10 N vNOw N O' N. 0 4N 0'j .l 0 Go

Go C 0 - - 'D00'04* N. 'o C4 - f.- A (n .- 0 O I - C r- O
m- m A4 N(4 0'4(-4.0 r-t'.- w0 w '4 01'ma, NO N (I

N ~ N - N.4 N- -N4 -- N 4N -4- NVN - N I4N

3" i 44 mIN4 U(M4 (44N .-. (-N 4N 040 (4 4 .- 4 7INO W 4f .14'n- W 4 44(UN &A M
0444 00 40 N4.0 0 0 4144 u-,C-u-, m N 0 -04 ndr- o-4. 004 t'-. 0r- r- 4-

IN NN .-.- -N -4. . -4' -4 4 C-4 N N N - .- 4Nc

UO 0:- Z.J cr~~.. N Z~ 0: - 1-U L LL
0. z) 0 - 44 J WD < 3 I- - r ~0 zA 20. w

4Z V) . Z1- 04 4 jL J0 -j IDu >. min D .z . L)A
00 0 0 .. J -1z > > -j 0 wz Z < 0 -- c00 u
k.) 0 z0 LWUiLLJ U) W W U. 31 kD m .jj -Jj .J x 2 z 0.

0IO.0 - ' '- NOi 0 Or- N N N r- -44 -a' --
0 10(4 c 4 L(.0 41 44 C w0'C io N -, r-0 0D

444 04 -4 (n4 4(04(UT(- C)0 .0 :

112

,C CC 4r-r- ON ~ %a C4 41
- C, '0 1- 00I

N,
1N - -N -N m

OD O't~Q', 'Ci CO 01 ,O pIt

x u u Z; w -nuuu I.-~- ZO ~ .~ 0 - x
v r- z - > n LL T rX- V V) Z Z

Z ~ ~ ~ IY L L:3: <cr . - 0

C 0If, ~ t~~ m - A-r : ~ U- OOD wr C , Ko G

1 13

GE/./6 2-5

Appendix D

Program Listing

Appendix D contains the final printed listing of

the AFIT Version of 1620 SPS. This program was assembled

on the IBM 7090 and printed in an off-line operation

on the IBM 1401.

114

O%. 0 00 N - 0 w%. 1 % 1% L(09 NN IC

NON~ ~~~ aCCC 02 NC N IO. Cl C % 0 4 % 0 N.

00C 00 0000 0 0 0 0 0 000 0 0 0 0 00, 0 0 00 0 0 0 0 c 0 0
000 000000 00 0a 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0

44

0

0

000
0

z0
0 N0

44 0 -- 0
I -- 0-

00- 0 0,o Oz-0 00+
C: to 0 0

4' 0 C; ooo- -0 UN 0 0
00 0 0 0 0

0 C 0, -- 0 0

Z 0 - 04 N -- 0 0 0 0
- Q I, -ooa o 04 NQ Q 0 w Iw0 0 10 Q o 0 Q

C I -N 0.t NO- - - 0 O
0 n'~ N 00 0% .' 'O 00 0 0 O

00 .00 000 N.- - - - 0 N NN 0 N N NUONU Om
005 00 N 0 0 0 0 S

22 2 22.2 -- 0 N - 2- 0 2 0 - 0 0 0 0 0

4 ~ ~ - 0 0 N 0 T 00001005

NNN IN

00 0

o 0 0 0 0 0 0 0 0 0 0 0 0 i00n 0 0 0 0
o 0 0 0 0 0 0 c 000 0 0 0 0 0 0 0

11

N N

N~~~~~~~~ ~~~ m 9U 'NO 'NO NO - Il

1, P. a, m a, ~ ~ 0, 0 0 0 N

0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 ~6 0'0 0 0 0
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 0

o ~ ~ w oo papal 0 0 0 0 0 0 0 0 C 0 0101

0,
04 .r.F.

~ 0 0 0 0 0 a 0 0 0 0 0 0 a 0 0 0 0 0 : 0

-~~~~~~~~~ - - -N N -N N N-

11

00 000
1 0C 000

N N N N N N N N N N NN.' r 0 N ~ N'N N N C NM

- 0 ONO
0 0 000C
10 000

- - 1% N O - U~ N N Mf O. WO N o I. o - %' .. 0 0 t .0
N I , I IA .1 * ~ r IIn N N NtI ItO N # a '0 mC 0. .0 ty0

0m 01 01 0, m 0y 0
0 0 0 0 0 0 Cl 0! 0 000 00 000 00 02"000 0 0 0 0

00
0 0

0
0
0
0

-C0
00

- 00
N 0 W%00

6. 0

0- 00
0 00

a 1 405 00i
- 14 0' 00c

00

v 0 -j 0CR
N 0I.30 00IA~.1 UMIhZ 11 .

a 101 0 0 0a I 0 0 0 08 -M N 0 QU * 00 . 00 . N 9 10 1 -ofd

m 0
I'~ 0 x0

a, , a, 01 4 01 aI 0, a

N~~~ N 0 0 a 0 0-09
NO.0 .00N0 0.410 0 0 0 I 0w4 NON INNO 0 1v0. m 0 4

3000 000 00 0000~ 0 0 0.44o 0
-1 000 0000C,0 00 01 1 00 0 "00-0-0

0 44N. 0 A 1.0O 0 0) O '
000 00 00 00 4 0O.OT
00 0 cc0000 0 -4'r N ~ ~ O
000 00000 00 0 0 0 0000000

N.4 '02 z 0 O0CN40; p~ I I W MOtf4NO =2N410=0 N ggC00NtOr

00000 0 OOOOOOL 0 0 0 000000 0000000 0 00000000

z-
4.-c

0 -009
- co

0-0
0 z0 LD

00 ac.0 a,4 - 0. '
N0 0101 . 40C

0 -- p-. -00. 0 4 1.0 .

0 0 404 0 11 0. 4'0l,NO. 0 C aa 000 4.9i.0-~~4' .4. 0 .3~ 13 N0 4'A n . . 0 - .444'O

0 0 0 N 0 z.4
4

0zz O O. * 0 cc
j N D~ 00 Q w -4- .2 2 0. . 4w
01 a010 0 Q 0M 0 - . I~~0*4. .

0 0 o4 2 .

0 0 r -0z

N - - - -- - - -- - - -- - - -

0 4. 3 4-119

I..NO.0N00 000 NNWID ~0-N3-O00 Oo 10 -to O.7O0.ION'.0 0
'9N00000 t00 9MM 01200 -000 O0 wo no I44 .'oP'o 0

Wy o0004 0 ON 1P~ 1 -01 00 NOO 930 ou 0,40C.0'. 0
0N0000..'0 00 000 000000 N00 00 00 00000.000- 0

-9 10100100 009 0000 1000100n 000 00 00 000090910 0

. 0 0;z 0.0 00tN I'D 1, M N-Noo00 I 403- '0 1 a :O~0N N0NO
0 O04 033, .t9.0 Z3~3~4 .007 P. 0 M00 00MI~P 0

0 0 0,?00 400 0"MNO2N39. 0 P23 '0~ P 4 ~
NONN-N ONO 0 NZ N.INNN39 NO3' N3 00 3000NONNN 0

0 000 000 000 0000 000coo00 00- 00C 00 .000 00000 0

.N N -t~ r .' NO Z
3'

Or". .t4 2 On1' N4'. N4 N4 It

t- N OONOON NNN NNNN ,h 33 .4 .NNNNNNNNNN "NNN NNNNNNNNN NNNN NNNN NNN NNNNNN
0000 000000000 0000 000200 000 000 0 0000 000 000 0000 000

z

4 .

- dc

at 0

D 0

- 0

0 w Uw t o +4 c
N - 4 r 9 xc

0 C

le 0

cc w9 Ix -0434
0. 4 D.- 41. .4' 4 - P. -- 4-

of 0 4 3 N Z

0X Z x o - V UWxx I 0Q "3004,.~0 u 0 am .~
.0 mu aumW llum Io 4.9J.M9m a 0o 0 499 0m 0

4 K4 0. .* 4 N * 0* U~. 0
0N I. MN a 3 % 0 4 9% . . C

- ~ ~Q 14 41 0. -04,0- - -
0% OK *.. .* NNNN .. ' ~"..900

- - 3~ - - - -93.t9 -W -0. -9 - -0 - - - -,.. -. 0-4 ---

- I- - - - - -0. * 1204..9 4 0 .. -

00 '0 02 20 0-N - t2~ 00N 0 0 0 M r~~~ 040 a%-~ N~t 0' NN ~ 0~~0 N'Cc
0 0~ m 10O ~00 0 0 0.0 N04 .wN'O 0 0
-C 00 00 0000 00 00 0 0 0 u0a0 00000 0001000 000000

1!~4 A4 't a, Nr *O4 -rN2 4-r O N

0000r 0r- 0' 0 I ~ I'tIaN a-0 0-N 3N ~ 4 N
10O'N OtNO mNSt% ' 0 0 00 1 0 Nm NNOOO0 N

0000 0000 0 000 00 00 00 00000 000000 0 000000

*vemI e' t I 44 44 flNr N'f4N ,. % NN, 4N

NNNN IN NN.NNNNNNN NNN NNNNNNN NNNN NN
Oc 0 0 0 Q000M000000 0 000a0 00000 000c00000 000 000

0

1 0 0
Of 1-

0

W c 1. 0 1! Y 0
8. A 0 3 .) N 0 "

00. 00 'A-

0-1 0 t 2 1Nof I -i : N cc 0 2I c
& N x 4 . - N I I 0 JI ! 2 .0 N 1. K W4, Z s2 I

> 0L tm 4 u x 0 0 4 0 *.Z 0 & &0 &.

ou WNU 0zz -1 UN UN 0 UON0 .- 0- -
UN !4!28M 4 A1 x 0c UN 0 aIN W 10 0. UN N -2

00)0 ~ ~ ~ C WN Q*. 0 00 0 0~4 -. ~ 0 >0 0

A z z z Z Z

.UNX W2 O 0 W MZCM- W-

UNON04 N0 4 N U

NN0 0 0 0 N P'N N N N 4

121

'2 0 00 0 " .? 0: 00.0 0.0rN0 MO~0 0 00 0 00 00 - '.O-00 '000= O0oo 0 000oo0
-9 -o 0 0 00000 020000 r00.o~ 200 0 04 0 0 00 000 00 - 0 000 000 .. 0000 1000 000

w 0~ 0 00, 0 0O r r N%. 0~r230 0~
- ~0 1 , ' .0r . ., -0 - N 0 10 2 O 0 N . -1t t 24N0O N NN2~ 20 - 22r. - r r o -e. ~ e.. l.NO ~ 00 NN ON 0, 0 0,0~22

N9?00 000 000 000 000000 00000000 0000o 0-N 000

INN I I I N NNNNNNNNN roo' MfI 1 '' 1'N'000 0 0 0000000000000 0 00000 00000000 a O-lmm

0
z

04
1 1

0

at

1.91

4.37

0 -- 5S -t o.34% Z

0:
I C * 2

0 -i - CQ 0 0 Z2 0- 0

- w - Uax.N - a o1) - .. .t
-0 - 0N>* 2 1 . Z 0' * 4 2 42~~N 4A , c 0 2 I - 0 a - *0 0 9 N- O 30 I-. o *a - a

- 0. ,t I I * 1 N 4 %0 1 2 . . . 0 - . r * 0 . - ~ 0

NI0O0 0 -0~00 a 0

0o CO00OO 000000000000
K 0 1 100ooo 00001 0000000

~~-ItI4%FC0~~ 0.N O. 0."N Nop- ONIC
l' o .0 -. ~- mC o.-.0 N ** ~ *%0. C

CC~ $ I'0 C' *CCO CC -0N0f 0.--
0,0 000000 1 II II),S 0 0 0 0 0

00 00000 000 0 0 0 0003)D0CO0 000000 00000 000000000000

CCK
0.-w

00

1 z

3 1 4O(n -

z c
0 0

- 023

.N 010~ 00-0 0 0 -. 0 0C -00 0'0 - -o wc 0.-'.~1 * 00 ON ON 71 Onoo 1 0 0 40 000 40 C 0 0, 7 48 *0
1"~ 00 0.~0 0 0 0 0 000 0 0 to 0 00 0~* 0

4~~~o 000 0 00 000 0 2 0 000 00 00 0 00 0010000o

--N. -~ -' -UN0 88 0 o- No. Or'' od o to0~-8

a .0.00o Wt *0 t.U*'- 4- N 4 o 0 '~ .gtU'. *0 ! oa - N 4

mN'~ougg~ m- 0'4 .9u, I- o00 mNN 0 . 4'

.0..0..0. 4) .a, ~ !-N~ N N 4444 44' 20 !0 n g W na tz ma ' zzzn!000

.t - 4. 4 4 F%6 N rr t1. fl. tM' rM$ 4-' $~I N I l$r *

00000 00 00 o0 0 00 00 00 00 0 000 00t 0D 0000000000ow C l !! o N l

N o -, oo o0 m - N N Im , mN
'a o ,C)ol 4 r- - ,11 o o waa, m o (mo , , (, c

o -

w- Z

uz 4

4L
0 c

4- A. I S4.

z N - sA

40 c -e 40 P:. 4- N r0 I --
4. I., 4.. 440 0 10*L c- z

.0N A 422. 'U . 0N 44C m . A' * 8 -
- j.. '~~ W c+ * 2 U 0 .'o-'

42 O 1.1.' 4 1 .~ 1 'g 1-W- G1. N * af1
VI "3z In ., S. N 0'. - . Z l. *Cl ,

O~ ~~~~ -,.. 0: 0 ll A .0'A-.
- *~0 '(4 '(N 22 2 gN. . 4 g4A

zu 3 0,40ou. j o c 1 - 1- 4 00 *O'0 2 0. A04~ ~ A. x :) z.-U .- U'. . * . - . . 2'.. -* ''1

0040..'r x, OZ OZ. . oz00.'4W4 o xx o0 o00o'' a u-- - -0
- to 4 *'U-0' Q U 0.0 U1 um 1) w t- .go Q m Q Q o .t-t- o-w Q cc w co .- .U .4'1.2 4 .4

U. 0 0 0 420.4 0L 0 u

0120

0 00 0 C. 0 ;;0 00 -00.O90mo 0 0 t0,000 00 -0 O0i0 11 .O~0.0 0 0 CC NI 0 I C OQO O 0 0 N1-0O0 Q 0. 10 10 0 0
0~~~~ om 0 ! .00 400 ON OC C u 0 DIo0N 004,0~00 Oo~~

0 0 0' loo 0 0000OOO00 0 0 M14.00 00 000".00 .0.0000
. 0000 0 00 0 0 00000 0 0 000 1 00 00100

400N N b. 40 N 0, .3o 0 N0.'4!og0 4.0.o0.- 4 w .N
4.'.'- -ZOON.0 0 0 -T~m 4w 00~ m N

N-440 40. 0.4 C " 0 .0.40r4 0.0 4440040 0 I00 4.
-. 000 - 0 009 000 ;0000000 0 0 00000 00 000 a00 0 a0000

.009.-C~~ 0. 0N NC4 0 .N N 0N D P C r 04 .' 4 4 tC 0 -~

0000 c0 00 0000 000000 0 000000 00 0000 000000a0 00 0000000000

0

0

100

C! 0o I I 10I z

0 0.

014

LA~ .0 0 -

0N 0 cc 0. 0wr.

a 0. - C *4 0 4a a 0

Z IN 0 0- 20 0025

0 O (-, 0 0 0 c 0 0 00 ~.m~ d0 0 oo W,

400O04? 7,o o 4QOoo Na.0 Nma.I 00 0NNgtI 0 -00 -to

w~~~~0
'aO~0~ 'a~

0-
a,0~ ot~O cc~0 00 CO 0.O 0

' 0tOO 0 0 0000 ~1troo MOOo 00 00, 10000 0e0 00

4 00000100 -00 ag 0000 01 000 000000 00 00 00000 0

IL~ r4 -r~ N0N 0 0C O lA -
4,30 ~ ~ ~ 4 N. 4 0 -' .a0N O N N 'n4 U0 -~ ,t0.o r m,~f pNo4 N O. N3. NI'.OVN '0 0

0004.3000~~~~~ 00. tNCN D.'41 44.l,, Io,344 O 40 *'
00 00 0 00 0 o0 0000 00 00 00 -0000000 000 00

m'3 o o C o N m4 4 o

ooooooooO 00 cc
000000oooooocooo oo

I

z

6w

aZ z
Ow

4-K

22
0

4It

0

z 14 4

w wK A

III

N To I- o
.0 I 31 - 5.0o g 02- i

z D :jg I - C,0 4. 44c. 0 0 NC

z 't 'J 4 N 0' ~ .I .J ~ 0J 3 L

-I w 0* 0'xhJ4 .L *

-g
of c K of cc g

acU 1~ IL3S S4~

w 3c6 o 2
at Q z a Mmo.

- - - 0 L c

.. 'e'f4t nnf4 fnn

126


~~~N 0~iiNN0 N4 NO 4O 0N40 '0 0 *N
4 , 1.2!-1000 0 I004 0 0444'0o~o0 0-00 40000000 0:!004 0

40000000000 0 000000 00000 -100 0000 00000000 -000000

t~nnt 0N~n~tNNIT4NO.00 N0'NOOO OIno NWWIWO4

00C0In0O7cO, 0 "'~NN0~ - N .' 4 N -~0-0000 0,*0N~o

0001000 oo 0000 00000000 0001 0000 -000 000000

~-~.040't- NN0 4N n' 4?.O T ~ .~4~ IN N4

0000 0 0000000- 00000000000=000000coo 0 0000 0 CODO0 ?0000

0

0

0 M0

N A4
00

Mn 030 N

0n 0 z 0 cc I4 I

N~~~~~ - I -N- 0 - N

ofn~ 4- a2N 4x 40 1I1 * N 1U2 N-NN 0.In-* NI- e 0 Z- 22 - QW 010~~~ ~ I.0 04 U . 4* 0 O w- 3-

0~..J 0~ 0 Q L:U ccU2' 0 . - ..2 . ~ !h 0i

4 4 ~0~ a, 0 ~4 -. 44 0 0N M,.^4 r i Q IaNA4 4 4 a0 ;0N Mr L4 M

- mmmmmm-r *I WW 44 U 0 44.4Li 4I- 1 20 4aj - *F4-.4

4 0.W
-I I, IL2 2tn-n--

127 -



00NN070 lo mo0oo 0N00 a 00 0 00ONOOON
IfM4 ~0 .01 0 000 0 0 10 0 000 OMNOONNOJ"N0MmM

0 ooogoo 0 - u O. 0 '000 N - 0 00 0 0-. 0'0~

4 001 00 00a 0000 00000 a 0 n 000 00000001000000

*0s11N0O M0. I In.'o 0 N 0 ow NMMw o oN o

-000000 0 0 0000 0-00 0 0 0 00 0 00.0000100-

ON4400N ON .tCC 00000 00 o-0 N04. ,t W N O01 400

No 00o 4 M!4!. NMMtr-N Q0 - 4 1 4 0
4w N4l~~ 44.0 .0 NNNN NrN

0000 000000 000,0. 0 0000 000 00000 0000 00000 000 C, 00000

0

199

09 z
0

u0

z

4 0

N Ny

0 ,0 49

4 R r4

y ey a :71zz6 I .4 U
M~~~ A:0 9 !WL

I. a4 --
to % NM.ty 10 1

-x U, .- * I
40zl S a, 0 W N 0 M l 4 0

4 mmu ' 0t w4 02 * 0
MI %0 U **0 *

U -04 MMOSOM MIOW 0 .0 .M -- 0.1 a-* 10 -l-0

- ~~~~~~ 4 ZX A.A. *- 4 -0N..Z .- @ A4. 145

- ' 0 N o 0. XE
02- !Z 0 N

-OOOOOOUK~~1 NNNNN NAONO N O -00

U128



'0900 00N0-O. Oi000.?0 0010 .0000 00 009J 00O 00 C00
0-0'o 00 1 0O00 0000 NOOO N0O'00 00 000.0000 00 0~0

W100.o IC0.00.0 . ! 00 ONICO 00 M.*000.t0 00 0'I.
0 000O =0000ON0000ICn.0 N-.00 Oo. ; 00 OOIN000 00 0.00
4 00100 0 000100001 0 0000 000 00 00 0000 00 010

~~~ m~O ~ 4 N0 !2 40 4 N'0 ~ ~ 4~II 0 Nor-

000 00000000000 -0.0 0 000000 00 0100

0 O 0''000000 0 N N N 1 000 0 0 00

C,00 0 0 00 00 00 0 0 0,0 00 0 00 0 0 0 00 0 0

4- - N -N N -- N~N-0

aa

4

at
w

ICof 0 w

N w w -j IL. N
N C 4Z

0 *.. LU .U4 r..P . 4 - U P. 4-
+ +* + +* +#* 4*D + + + + !- w -. *
: s ;- . - ; N M). a - N . *N NN 66 1 l IN

++ 000.rr~X 4.0....8 MMD.8 M- 40 0* 2 m
2.oN(NN0WCZ m o + m N % MO22-.242 2c4 0 &C- &0 2 & 8. = 2 Q CL

cc. w z 0 0 8.OW 0 z caco 0! 0 -

Szz 0 zU.KU 020I. 0 AJ a 0 0 0200.0
4C000 C404U II00 00 00 00I0 004.U0M Jomuca.

0 In 0 I

U~I 0 8
(P 0 Iz CC . N 8

go 0 48 . 0 0 4 CD w Ui * 0.8. 0 0* 8 8.

CI. C 0r 0 0 0 .Vl - ND wI cc co cc '~00 I. 0I.400 NC 1I 0I I4I 0 a - , N p 0, 4 . 0I. 0

129

40

.00o'~' t 00 g I f, ON NO00 C00~ NO "~l4
LI 4000 1'4 0 OO O 0ngnolo 4 OO!0Q4!8N N~N

.4 - 00 00 0 0 0 0000000 000 0 00OI 00001001
CL

.0 AN44C 0 00 fN0'.0 00 4 0A NU t . N

N ~ O00 00 m44 04 0 0 0N.N0 ' oa0N444
0' .tI'.I0'~O' INt NO 0''' l0 ''4 4 04N0N 0 44 ,0

0 N440 00 000000000-0O0 4 000400k 00.44

0 0000 00 00 0000000000000 0 OCOL 00000000

V, ,t't0 4' 400 N 4.00 0 0:;* !t.N ~ 4 ~
M Nt N ~ NNNNN N N.-' CI MEVN4 NNCt N $NSN

0 N~0O~' 40' 0. ~ 4N4 'N~'~t 4WON.-.N 04N40'N4

.1 NMCCC? wtC 0 M44N4m4 444W 1.&r.N mN N 4

0 4 4 -D44 4) 04 1 4) 0 040 0 0 a044O sI 44 4 444 .044044a4

0 0 000000 000 0 00000000 00000 00 000 000 00000000

0

4

In

wI 2

0

CL 0
4. w

LI
2

11. 0

-
4-

IL 4.%Z%
In

I +I

JD D 8.z 0 mi Kw-n z
Z4 4& & 4Ji1 9Z & .

0M 1j 44 x.

00 'A. 0 C 4) L0 N T =

me CLL 0 0at
- . t

8." 5 'm N 1

IA 2I- IIIL 0 I4. 0 I .N

z O - a .0 008 40Q Wo %Z *xK - Nwz

m o0 21- ccA 0 Ow00 'A 3 N . cc

000 00 LI ------- N * 0. - , ~ t NNNN***MAM

- 8 ----*4 .-- - - ---- - - --

- IL I I130

01 000 11 0 04O0 00l tOO.-',0O 0 A N ~ 0

Q 000, '0 zo ------ 200 -------- .34O30,
-J 00 N, 0 tNN0 l*I0000 CNON03

< oi 00 000001 0 0 0 00 0 0000 .'00 00 0 0I

--- 22 , , 0OOC. N0000000 000000O00O00O00000.0.00on 0000000000000000 0

:t t ~ 'N f 11OP 1 1'P 1 0 NN IN N O .NN NN NNV A4,1Ivr- r

00

00

Ia.10 U1 1 Z. W

.4 CU

ItI

A ~ ~ ~ M N 4 0 x!0^1447 - 0 4Z4
2 44 42 20 I UU.c 2 ,4 0c

x .2 -- +2 Z. 01 0 w

UZ 0N 0 0 - - - 2 A
A , 0 z . N I NNN NN4 N*N N C .N *N N N

'n Coc 10 .9 .At - - - - - Z4 A 0 a

CL 0
4 za., % r 0 a:

aq. A40 ml--.c ----- 0

w 01 0. N. 4 04107001 4 4 0

AA1'A 1'1w

AC - O'- Nr. ~ r @ O . 'tA '0 N n' A r- 0~..-*r0.a ~.131,0 CO - 0

0000,~~0I O00 .4O N4 N 000 i00Oo

0401 0;o O 0 00 00 0000 0 100 000000100000 .a; 100; o

NO~04~.N~o CtO 'o .N 40N.

00000000C00000 0000000 000c00.000000 0000000 000 00 00

0
CL I I

- .4 NO 1-

- N N N I 0 or

ON N + + M2 N N & Z 42 4 L.Z '4
4 - C.J04~ 4 I-. O 0 M~Z -0 1 ~
-~ 40 a 4, 0 0J li 0 !K ZU1 =~ IJ 00'Ila *
a' . 0 x ow~Z !- CJ - - 0. +4.. a4 ... t1 W0. *0L

Z (' t. 4' U * U N 4 W.- 0 .C~ K N C N~~

C~~~SN- NON3.- * ~2..
-J~~~N 2444 z)-0 +4~2Z 2cc Wz M4001+MN

0

z zo 11'0 0 0 . C . 0. 5 0 0 ~ 0 4
> a: I..~UI 4 N + -9 4+ A z z N 22ZOZZ x I7 22 K x . 0

-~~~ ~ Ulo-'2u~ WON4 2r lLD Z Z &~~ X!. N00 *..4.-.3 Ji -..

N4' No M 0 0 0 9 LM.

4 C 2 00.0. ..0.

132

00NO. 0 N o'oZ000NO0 ..0 0. 03 4 :!No'00 0

00 0000Q 0 00 000000~ 00.~. 0 000,0 00 0
.0 -000 I0000000500000000000 100 000000 0010-.00! 0101000100 0

10~ O a w0M 0o00 OO 2W 0= 0
00000000000000000000 0 ? 030 0 000 0N 0000000 0

,0 oo1 oo ooo o0oo00000000000000 0 00000 0 co 0000 0 00

0.

0 0

zz

u0

aI 001

K IL
2 l l w- ! 2 2

'.4 0 ,0

0 M 0 w t ti L & W1..i WP C .
- -IL 29 E .1 ;C

w NI NN- N N +

CL 0 r' z z~ o

N0 40 .3020 ---- 02

. .0 2 O z-~ 2 0 0 . ~ N Z

- 2 4 3 .+g~ NO . 0. 0 .- N ,0N;o

- - .. I 0 E0W*8. 4 + 8.I133**

0 N 00; 0 000N 0 a10 0 Z 0 1 e-N wI.0 r 0 0 0000 0000 In O0In 0
- ,0 0- 0 0 0- O-0 -0 4NZWO0 10 1 -MOO Jm Qo r. O~-
wo ~ 000 0 0000 0-.00 0.00 ~om 0 0000 0000 00000

4000 000 0 0000 0000 0000 01111100 00010 0000 00100

~00 0 N!0O. r .I 0O-.. a- 0 0 N0 0 0 0 0 Q 0 a a, 0.0 0
0 '0 N. 0 Q4 0 0100 0000 ~ 00. NCO0 ~ ONNNO
0 ~0 -. 0 0 4 m 1'0 0 ~ N C NN 000 04 mo oo 0N Ol 1N P0
0~ 0 -- 0 0 00 Q wo 0 = wW0 Q 0 0) ,0 ao wa00 0, ~04 CO . .0N 0 000o 0 a000 0 000 0 0 00 00000000 00000 0000 00000

mt N0 m N mN. m0C~ N.r4 NNNN 4 14-

N NO Nr : :- - - - - - - - - ---- o -,4,c oo :w N N N w

4tsp 4wolo M4 14 (o M O Z w N~4 c m 4 a
40 4 44 44 44444 4 4 ,444444 P44444444=444 'g4-4m4a4a,4a4444m44m4m

a.

0I m

to 4 o 11 1 lz l ' 0 00 0442~ z&a Qx
I o 0 0 0cc u w z w - Z 0.1 00 N s~ 1. 09

04. IL m a. w at0 0- z~ x-

W x sp*zxz Qz z . -z o . . - ..

or sof0 Z0 adrf cc..UO4 Q.* s Q15 X -msw-I

-. a, a 55 ' - . o' 0 0 0 0

4 - ~ - ~ Z~i L- ~ZZ KZ ~ 134L

.00 ' .- '0 4t 4'.N00 N44'' 0 *0 ~ -,0 4
,00 4w 2 0 NN'NN~ 0 ~ 0 0 100 a n.0I I~. o'4 I, ,n !0, N0'4. 24. ON , 0 1 0'N4 0 N ,

0~ ~ 00 000 00- 0 0-00 0 00 0j-0.00 0' 000
4 0 00 00 0 0 0000000 000000 0 0 0 0000000 0 000

0--. 044 0.40N w N.N4. N ~.N- O
04C ,4 0 ': ut44,. * ,4N 0 0 0404Nf 0 2
0 0 04'o 00 0 00 0C' 4"0 0 0 70.' 04'0C 0 0.000 coo0 00 0000 00 000000 0 00 0 00 0000 - 00

N4~~. aN., NN .N 4 .'N1N *0 N.-I t 4 1,44

4.02"I O .. 4 0N4 2 2 N .0 04 "IN , -r N N*NN 142

00 0 0 0 0 0 N N NNN NN mmrNm

000C 000000000000000000 000 0 000 000 000000 0000

00
0

2.

o a-

M ~ ~ ~ 3 N-
Z a 0

0 c0

- 4 -

0 .

0 2

x - o - x - z o

cc1 do c - Q o Q

-0 0
0, 4 ac. NI- N0'w 44)

N~~~~~N N NN0'7NIM5412 0
0~~~o -0c oc o 2 * 0 *.S 0 1 02 U 0 K 2 0.

-0 ~00 00 COONO 0ONO 0.000 .0 JON / N.0 NN0-~0
0 0 00 ON NO wN~ 0 0 ONOC 00 0 0UO '000

02!0 0000 100 0.!0 0 0 00 00 0000 -o o 0 N o
00 000000 00000 0000 000c,00 0 0 0 00 1000 00000,0001 10

4.t- ccNN 4' m~04 a~.t 04 . 0 'J04
w ~f J~0 ~ N '-

*m 0 Ou4 a, 0 Coo, 040, 0.4~ t.0I "0'-4 N J~ U,

00 000 00, 040 ~ ~ 0 a, 0 O 0. P. 1o OO0~
00 00 00 00000 000 0 0000 00 0 170.0. 0 0 0

.1.1.144441.1.;.~ 00 4.0404 4 000 p. ~ .I. 0 0

0 0000000 0000 000000000000000000000 00 000 00000000

z
9

e 41

of 0

144

0 0 a

0 r 0

+~~ 2 0 .ao~

mw~~~z Z0 WZ Z N;O
0, + .0. 1

a' w & 4 0

ID do 03- D 9-9 - K Z

'D N 0 4 a0C4. o.1

o 0 0 0 p In00W 0 0 0 - 0 4A 4,0 UoW00W 0 0 IA0 0 0

a - 0 -4 N4 1 ~ - 0 - I* 0

ty N N NN O N A. N - - 00 N

0 2 *l* * . 2 *~ - 9N 0 * 1360~

0 04 C'0ON '00 1 sc 400 .tWN.0NNN0o o0 ;!00..0 40
C~I COCQ 4NC2f4=!00 00. m0 *I 4 NN. -o -40~0 00) ~ 'fl-00 0 00 NO . 0 0 0 0~4 40

0,-000000 2,04O0 00 O-o 9' - 0 00000 00
.4 000OOO '0 0 - 00 00,0 - loo0000 00 10cu 00

N404.t .40 O00 4n-.t.'N04C Oz0 M-04. '4i0''0 -O0 .OO0NN4MNN 4tN mw4NON I
4044 'N004 000 400 48. N4NN No N N 44 4

000Q0000000 00~0 000N-'O0N ON 2002"- 00

000 00 cr 00 0 0 .0 0 00 0

C 70 C"0'~ SCOC 0000O-NNNNNNNNNNNMMT'f
0 00c, 0 0 0 --- --

0

9L
00

0 cc

.0N o 0 0 0 y

+W 0 4 -0
Z Q L 0 N08a.c

ac 0. .9 z +1 +.
IL N N0 - A N9 CL + ..

- 4 0 N & 42 0 '0 4 o 0 N d4 .~

0~~~ WN La +0.,80 4 1 a 4 0 0 0 0 -

~~9 M.0~ cc AD8~.0 40 0. do 4 co22 &8 .0 *0

goa0 0 0 u 0 0 u cc

c1 0400 0 - N - - N - -

NN'''.~''''00000 NNNNNN N44 44 444NN N ~

137

O~~' ~t~"NC 0s00N0N * 0~' 00ON8U00 NgN~o 0

Wj ON:WONO ON O N0t.0l ~ OOl40 Z O0NN4I ' * -40 00 ~~~~~00000 0100 00000~ ~ O00 O O 0 !0-004 0020. 00-200 02,0100.0102 ..O oo9 100 -O000 00 .0 .. o

ONIM~OO : -0 000- 0o-a0C40-Dw 0 U 0 4 NO U 00 N UNNd.
NN9tom0 N0I4'0 O.4tI0* O I' I4NO0 04 N N .2,1
*0 0 0 0 ' 090N NN K 0 N
ONOCOC0 00200 0000000000- -00~000-0 20onno4 000-0~

4 r0 W -4100 w 14!w0 N 0000 N

N=D Mo' O'0N0 40 14O0-Ntf4 0N4'-~* 4Iw00N NMl

0000000 0000 0 0 0 0 0 00 0 0 0 0 0 00 0000 00

01

+0

C, W1. 0.0 .

-If x g A ZC
- w ., QI 0j c

N *NO-W~N N .0. ato 0 0- + 0 zo & 00

-W fo7 0*.4 1-0 m 40 4 *a4*4 I K 4 K -

N W*4U go UNm 04 . 7CoN1 0 CO -1 * olZ*. c u

- -O I . .L *. 09 -I0 Z

do 0L *. 0NW*-wou-- P0 C 0400 0 4C0.1A . - Co. W". C 0

0
co ca d4I 0 19

U000 0 -O 44U00 = 000d10 CJ.0. -L0.O
NM .A W4

4N 14 N NN N

2 138

- ~~~ ~o .' 0NO0': V,. WFFU 0 WNO z FC ~ C

~~~ 0 0- o-coo 00 ..- O ' 00000 000,
0 ~ -00 00000001-) .01 .- 0 00 0000 01l -

C ~ ~ ~ 4 NO. m'1UONU.I N.1N Ntt O FIIN ~NO N
4 j ~ aO N0. I. O0l 0000 NO 4N'. NOWN0 0
0 -FX00-F-n .I rO- 0 - .MO t

0 000 00000.0 O mot 0 0 N. ~ -tO O'
- 0- 0000 000 0- 0 00 0 --0 0 0 0

In 1tI 000 Nt4*.C0 WO N -.1D0 I M- aOt'' - 0N

0~~ 00 00 0 0 0 0.

0

0 00

W 0 c 4
a4

cc :D0 0 0
m0 00 0 z 0! 0. 01 . 00

0 0 0 0,00

Z to 0 .0 aV! 0 O

A 0 0 0 0. 0Oz
a. ac A a a

AL 04 3F

a. 9- z ~ 9- . 9Q
A z .r CCDI 0 cc i 0 0 44 00c w Z

0o - 0
O1 0 0 00 0 00

N 0 ~ N . U' t - 0 m 0.0 0 0 ZL * 0 . .N 2 22

- p 0 N-l 01 4 0 . 0 2 0 0 02
K -'0000 - .- .1 0 - m N.-.ANN - JN 2 0 - -

ZY "y~ n.~ y4 Z NN N0a A NN = NNNNNMN NN NA 0 9 0 A 0*- ~ 0 A
0 ~ ~ ~ ~ ~ ~ N NN 2N N N 6M 4 0N0A *N 1 60a. A 0 0 .0

- .. . 2.4.0 0 *a. 0 2 4 .a139-0.



4N00.*l0 0 '00.t. C0 r~ 0 NO 040~ 0000 5.t090
NN00NO -0 600 0N O 4K 0N00 mO NO 0 U42

0. o- 00o -- oo-0.00 000000 -e 000 0000 0 402!.
4 000100 -0 .00C,00001.00 0 0000 00 a 000 0100 0 00-7

MM4 N0 4 .4.4!!!NN.1 V, 4.'1 N0 04 .No n4 NN

4 N0r0-I rmr N.- ~ O It. 4 r m It 4 4It NEP # I N

oNN _ a4 oN o-. -... 1 f-N w a- .t1..1r Nr a. mQ1.1.14w .1MNo N

-- - --- - ----- -

z 0

cc Nw +:a
- 0Tt: 4
'A 2 4

- 2 0 4 0 4+ W .. NO 4
2 of1 0.1. s f"I z- 0co 40 40 0 04 N oa 1. 11 0.. 'A 4

4 -- 4 4 m A j9 a~ 4 4. wW -59 0--M 1 1 : *m o 0 .2 0.

4 ga C 40 0 0 oa4. x z z4 95 04

m. IK O % Z

m. # 4 a- 4 4 00 c4 0I o )&c

4 -z

AtN No 4 ANN 4 Z U N_ N_ 45- go 0.Nlo
rN4 4r 0~ N*4 z N .. N. N. 04 N N N4 N ZNN N

140



-o~-a ~ 0mo4 - ;10,'0003 0 ~00 o 00-' 1 QQ a O0O N 4'

4N~ 04 3' '0.400 01 0. '0 t - '0

4 00 0000 5 C I 1,000 0 0 100000000000 - !0

N44$-,)Mm 0 V a-- m0~ N * 0 moN.O II OI'N4 w I I I

C"--~ ~ "'Ooo --03O --- a 03 ------ N ' ~ "

4N4NN NN. M~ 0 4OO 'r 0

0-0-- -0 -0 - -0 .0 . 000000- --

0

CL z

.0 1 
0

4.Oi

9 0 a.W.0c

cc cc -- . 4I +

0 0 0 I 0 -- tzt-N~~- M K 0L M4 0& . * U
-;: 0Z le 7 T t t zO 1 $1 Z -10 4. 4

IaW% 4 z 00M A 4 %.1 W C ~ A~ 0A 0 0 IU

0L 00- 0

~~~~~~~1 0U )* 'W 40 W ~ N I I

~~~. -~~~~ Z * 4 0 4 * g 0N, ~ 4 4 0 ~ 0 4

I.J40-N NNN N 44AZ . UM0 2 M Amm m Z ' 0 0' W 4 2K'J'Zr0
-M AM M .. . m M- mmM A m

N NN N NN N N. 0r N3 0~f NN NN N 4o NNNNNNNNNNNN

4 o - KI KK 4 1r .~



0~400VI~N. m4'~ 0 0 00 P.. N 00 '1,0

00o-oo0 Do0040 4!0. 00. 00 0 00 0000.00.. N00 0
a 0 00 00000 .. 000 0 00 090001100 0000000o 000
CL

900010 44 -to g -a0 0 aN4g 4O 0
040N omN-M04N @O NV 0 Or- 4 0 :00 4 0 0044 W O"O
.N0N0O2NOON, 0 y n 0 c--- 1 N O N N N N NN0N N

No. 00 00 000 0 00 'a- - - - 0 N- 0

o .0-0 a.r-I 0 C~ 0- 00000 aO cc

N NO N N N It It m -r N'~ 0 * O 0 4 C N 0 0N . C

N 4N M~0 m 4 P. N I Ir w w 0 O o 4 44

0

01I

z

a. 0

U. 00I
I0 0

K -
w

0i -j 0.
D. j z r

!! VIj I0
ILX . 0 a -4 WQ A-Vra IZ-

00
00 0.0 -

0 IL 0 0.

142



00 0 01O W0N-ON:O OAN1 NNOMO 0OO:!O No s 2
00 0 N100 r.N.-N O 4000N0AOmo00 90000 00

0 ~ 0.1 OM .00 N~~AO~0 0 00 co ~ 0 0
-3 00 0 0.00 . 00 -A0Oooco 0o0o coo'00 00 00
4C 0C 0 00 0 1103 00000010000 000000a 00 0000

0.

00 .t OOO NN .'.O N~ 1O 02~ C,

00 0 0- 0000-0 000 000000-- 0 -- - -00

~ 444.O0 N o N O A ~ ~ l I O

04 0 . w0 1 4 00 00 r 0000 N 44-

0, 
0

1 2 4

14 000 z a IA 0
-4 0 N j 0 o

co x N -S I

Z t 0 0 1-*Nc 0 - A f 0- - Z 01 0j
,A + + + a% Z 4 00
- of ON 00~ 0 -1- & ow - 20. 1

0 ~ ~~~~ 0 2 O0.0 -- ~ Ow 1 0 0.
- 0 0 R- n,0 01 &* 4 0. -, N -0 w 44.&M

0 N 4 0 4 ~ 1 -4.2 1- W-- 0 - 2 0 0 - 4

~ .0 a ~ 2 9 z0 z0 of z11- N4 0. 9 4 z10 . .. 0 0 0 . of4 00 x w .0

- 0 0z z~ - 08. Q ;' : 0400 0 0 we 04 co aU4 la 0 2 N 0 K 0 Z

z 0 U 1

!O m N. 0, N1 m1 U Af %c4NmWAa 0
" N 0 *0* M4 04 w4 r. % 0U 0 4 *00 4 4 1

NNNy NNNN 4NN NN NNNNNN ZNNNNN N NNN NN NNNNNN NNNNNN NowNNNNN NNNNN

143



0

0000 000000O 00OOMONO 00 0 00OONoo O00U0 0 0 ::N0!
9 000 000000 0 1 O0~ 00 0 0000-00 0 00 , 0

CO 0 0 1 - , O0 0 0 a0a,0 I N N~OCONN N 40~N C N0W,0
0M U4 0OT 0 0 4ONC0O M 0 NN44' :!4 N NNN 1 1 1 10 0 N'J N4NOM M.A In NNN~- r .-. NNM4 4 KNWN

0-- 0-.. 0 000 .- 00-0 0 - 0~0 0-00n000 0 n29

frm~m NtNJ~ NtN rMNN -rM -r ,ON..... N.C

N,4t~4 N~4 N~. 4O M N *4 0 N N4 0 w 0N a40Nw 0 4ONW
0NMM4~0 US4m0m -m mM 444M PS4 N M U C O 0 6U4

NNNN NNN MM M MMM M MM MME t~t~t~t USUS S dUcc

MSMM M~MM MMM MMMM MM MM. fi MMM MMMM~ MM~ SMM Mcc

IL4

z 0 0I

u ox

0. !- -m a ).oc . V G.- u .[
wl I 4v N N 4L

o a N 0xOZ
N, 41 IN a N9 I I2 S 0 1 l .

90-4 4 0 4; 11 9 0. 8. Z.0 0. *UIn "Sc!
-. o+ Ao a CS -J 'A 2 04 2 Z K 0 N

2 . 1 0 4 4 IL + I w 0 Q a -f., , -&& w a Z

w-- c NQ. 4 40o000 42a 0 - - 0 - 4 w*.I. 'm NI1. 4 ..I
US - US 0.US ~ W 1 0- * 200 . . .0 4.4 000

4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ r a0 0 44 *4 * * 4 S US OS U 124. S 4 0
- ~ ~ ~ ~ ~ ~ ~ 'w o w4 04 N 0 4. 0 0 * .d C 0 U 0 SS2

0 4 4 mc 4 0 s . I

4 45. 4 45. Kl 41 V" 04l 40 4 ~ m KA £nmv ow ,w~ 4fm117

0144



0 00 cON 0 4100 0090 0 u)~ OU0 ol 1 00 O ON 4~oooo aNcooo
0 oo 0oo 4 0000 MN2 40 ON 00Uo0 Nmm o C m

O 00 000 M~0- ~000 0.O00000O000000-ol000 1O00
49 0 00 000 .1090o 00000mn ao o o o e o o o o o 100 0

N ON 4.0 N 4 0 In ON w 4 ~ N r 0m0oNN0 N It 0 0
-r 10 r 0O. ~ o 001 Nm0~o~

.r 0w w 0 o 0 0.O, 0.-4 O~U

-1 =2 ~~- 0.-20 00--s0o~aO 0.-0-

Mt Nr 'PN .~ l $ N * -r

4 4 4 w 0 ON w'30 0 QN 4 w0 N'C0ON.400NW 0ONCON tNN. 0C01

z

0

00 0 I 0 -

4 - 0. 9L 0 4 .IN * ;;:0 11 a 0 0 -+ 0
-~~ -01 4 N 0 - - . s o 4auIO -S

Zo IL t~ o *lo N 4-2 t U~~ .Ai 4 Z.0 0 ~
'A 0 > *..I S** no - *0 . 4 * 2* .. 1 % .3 0 2

-9 ~I 0J' w K442 0. U 9 cc

Z1 040 .0 -9 4. 1)okic 9 w0 0 0 0 0

49 44
w ca a/ 01

4N~00N to 4 C0O0.0 N
NN vNM~ ' m f m M MM * ww....r4. #0 oo oooooo4 'aNr NNNar-N

NNNNNJ4NNN NN NNN NNN NNNNNNNN.NNN N NNN NNNNNNN

145



mo~,o M O ~ 0 0 8-.4 .0-0 0 .~O0 ~00 0 0I.0.0IO a0 Of
ON0 0V0N4 oN! 0 OONNNO NO 000N00 0N m0sg0 oom0.0.

1, 0~o. o-o a 0 eo 0 -2c 0 0 2 .n0:!0 -e0 0!0.
4 1 01080 00 0 00000000 00o 000O0e00000O0O000o .0

O~'tN It,0 .N. I~0 r- N ~ A m-0.0.. N0OrNVN.-.0
NNN.M ~ 1~ N ,~ m N N N ' N . N . N0 ~ ~ '00 4.00

S 000 Oi N !0- - ! 0 O o O O ! ! -O. . o ia. 0000 0 00 0 . . .

QON 0.00 N A r o '

.141

0

Z

20

00
0 i 0 +

1. 0. N 0 -

0z c . "!0 -C - : -
0j 0 CL 1

N ~C:444040.1110 A Z1 0 . 0 -. t- ~ 0 - -9 N _I W 0 0~0 o o -

0 A '.JA - I1N4 Q 0 z.~ zwz .4z %SN fi .0 zwJ40 -
cc -II cc. . - * - . 0 . . . . . ~ . . 0~ 00 0 ~ 0 2044 4 M .. 0 0 *-.oof

-9 0

0. a w0
4~~1 0 14KK0 OK 0

0 
0,

,a, vU 0C 0
4 w 11 0 -0 00. Na, 6 b 0 0n4

NNNN NN NNN~.J N ~ NNN NN N NNN N N4NNN N dANN N NN N" NNNN NNf

146



N ~ ~ ~ Q V% 0 0 0 W~~0M g IINNNUINOI0 00000
cc CO 0 0 0 0 a0 t *00O W, '0. 'a m 1 0N000 00000
0-~ O 0 0 0 0Ooo U t n...O,0 00000

1 ~0 O0 0 -1 0 w 0 0I0000 - 00- - 00-00010 00000

0 N MO N 0 N 0 N I NN410N N 4 .o 0 'v ' "Nt .0.

00 0 0 0 0 0 1 0 0 - 0000 000

mO :! 0. 10 0 4~ o a:: 4 NN 4 N.00 a, 44

44 400 4 4 NNN N NtlN C N r" 00yN N 4 m

0.0

0

00o

00

0

a. .11a

a.o 4 of 00m.

Nl 0 00 -

a. I I ON ).Z * WaJ O
0 - 'a -4 w .1 0.,a 4 NZN *N 0

- 0. oz1 ID 4* 4..M'40 0

U' *10I4 4 00 g- **- w4' 000

- o 00 4* 4 'a 4 04 .0 4 4J *J0 .004 44 .3

4 K 'K 44, , N 4 4 N K 44
a.-NYft U. 0 0U'.- 0... 0fu JJU1- NNNNNN a. N.~~aaa N2 Z2 2 m 0N0U'sNj 4 mN yN

..- 2 CO. 0010 400 40 1474 0 C.44-IU.---04 40II0



0 0

o4 * N * fa. N -- * N -

p. N - 0 0 N 0~ 9~U ~N* 0 . N~ 0 ~ ~ U

-- 00
- - a0a

0~ Ot 0 0 00
N .. o 0 0 00 00 0

4.00 00 00 0 00 0 20
-, w a-'0 ar o0-0 0C 0 00 0

m 0 e 0 0

0 :!000 000m0 0 0
0 0. E 0 0 0 0

a 00 0 00 00 0 0

U -- 0 0 * 0. 00 00 0c w w 0 00c 21J~~~ z.0 1' N -1 4 Q 09.' 000-

- -0 ac 0n 'A 0

0. - 00 00o 0 0a
4V%0 I 0 0 00 0, 00 00 UN 0 0 0 k"

a-0 0 N e90..I P.0. 00 & 00 fy "'D P..0 O0S0

- 01 0 , C , CO , 0 0 0 t t
,a 10 4 4 4 4 4 CI . P Z 0 P

P. 0. 0I F.1 .PK .
fy m fZ ry #4A ' UN N

-0 .. l0 148



A0

00
00

4 00

.00 4 W
00
00
00

00

@ N U N * N N 00 , 0 N 4 a, a

00

- m co 0. CY

0 0 4 0 4 -J AK

4 x a. N- z z z x z z

'S I S 1y I 0V, - 10 0 y
0 0 .. 0 0 .1 Z0 .0 . 011

w4 - 0 It 0 0 0
' L 0 - -

0 :, 0 0 0 0 0r N 0 4 4r w
0 0 a% 0 0 .J 0 0 - 0 0

5% 
0

0 ~~ ~ ~ 0 0 0 WL 0 0 4 0 0 0 0
P.dZ 0 f % ' % a O 0 0 0 0 0 4 0, 0 N 0 m,

0. I. PC -. 0 12 N. M0 . I. A . p-0tf P .. t
eyNU, Z %A Z N N I N N N N Al 2.ZZ 2Z Z fm 2420N ZO %Z

4 0 N - 0 , - *. 44 4N NU, %4%1490E



40 a

44

* ~ ~ UN 0 0 UN 000- N, N 4 ' 0 - N 4 4 N 4 N 4 0
N~~ 4 z 0 z N 4 N 4 0 N 4 N 4 0

lu aN 'A In A a 4 4 4

z z 0 4 Z z 0 0

-j t :: - a

O 0 - - 4 'A I 4 ! c
4* z z . 2 4. 4 z 4-4z

W u 4. U. two 4 K - - W 0 ow 0 U

4.~ ~~~~ 04
4~~~ 0 - 4. 4. 0s . 4 U . 4

-~ ~ -0 - a a 0 4. . 04 4. 4 0 4 4 4 4 0

K 0 K 00 4. U. 4. 4 UN U 0 0
K 02 2 2 1 0 4

24 2 1 2Z M 4 rZ4r * 2 N 1 W i
0 K K04 1 r4 .4 .4 4 0 0 .4 .4 40 40 40 40 40 40 m 42 4.

a 0 4 a 4 4 a a' -a 4 4 4 4 4 0 4,

N ~~~~~~~~ -p 0 N - N - 0 
. 4 4

d 0 0 00 0 0 00 00 00 00 0 0 0 0 0 0 0 0 0 0

0 ~ ~ ~ ~ ~ ~ ~ ~ ~ J Q N 0 U N U N U 4 4 0 N0 0 U 0 0 0 0

41 40 4 4 M '4 OD Z N U N U 4 N 9 U 0 N
fm 0 U N em 4 N UN m UN UN C' P. 4y Z 4y N U y N N 0 w 4 v N

UN 42 24 42 2 24 42 24 4 4 42 2N NZ 2 2N N2 2N NN1504 4



0 Z

U,~ ~ U, 0 - N P 4 U , U 0 - N U ,.0 0 U, 0. - 4 a, .0

U, a, I, , U, 0, U , U , U 0 0 0 0 0 0 0 0
U,~~ ~ w, 1, U, U, U , U , , U 0 0 0 0 OZ .0 0 .0 .0 0j 0 0 .0

x z 23 2 m 0 m U. w. U. w 0 0w

0 000000N 0 N
0 - N U, 0 0 N .

.0 U
Z Z Z3Z N 2 2 N 2 NJ - - NJ 2. N 2,.

o0 U0 U0 0 0 0 .0 U0 U0 U0. 0. 0'. 0. 0INI

.0 0 - -2 .0 -W, 4 4 -
.0 3 2 3 3N A A

3~~~~~i W, " 0 . 0 . - U U 0 )- 3 0 .0 .0

4y 24 0. N N N 0 N0 N N Um U U U N 2v 2 N N N N

2151



U6'

o~~~ - It x t0 . 0 -w 0 ~4 N 0 0

cc 5 5 20 J:z z o

0a 0 U

9L a. X, 02 2, U' Z j T
2j o- -6 2

o w Q w - w0 0 M,2 0 0

-o z a. o 4 - - 0 ~ . . 0

- 0 0 N - 0 a 1 0 o 4 0 o 9- 4 U
-~~~~~~ 20 2 -0 U 0 L U ~ U

w S. i w. 3 U' -1 0 _j j j 0 1 ,e ~ , U

U, 0 N 2 ~ 00 0 0 0 0 4 0 m N- N 0 0
2 0 U' 4 - U' 4 U K 0 - n, U 9' 4 ' .2 U, u. 0

o~~. 1.0 1. 0 2 . 4 a..2 N .
4K .6 .K a. a .U N0 00 -0 0 l 00 00 0 ,U

A 2, ::, - Z -, : - - - - - ---- - U' w% - U'

2~~ 0 1.0 N ~ U 4 4 4 m4 N 4 4 A
4 4 - K 4ON 0 4 O 4 a a 0 0 4 4 U .

0 ' U 4 U a I J -J -9 J 9 9 .9 . . 9 J .4 0 0 J UNU

0 0 0 2 U . . U. U U . . U. U U . . U.U520~



0 0 - N 0 do 0 0 0 .0 0 .0 - 0 0 .zN N .

.0~~~~~~~~~ 00 00 00 0 0 . 0 . 0 .0. 0 .
0.

o 0 . 9 0 C

.0 j .0 z 0 0 a

2 0 WZ 4 0 0 Z S z x x x S K z

o~~~M 0 .0 
0 .0 0 U 02 5 S S

U 2 0 0 of 0 0 a0 x

- ~ ~~~ .0 U0 UD .0 a 0 N0 4 C
2y -J U - - U -4 .0 U 0 .0 0 0 0 .0 .0 .0 0 0 .0

) 4 , .J a0 - rU 4 U r 0 m u 0 0 .0 m 
U Ua 

0 'a 'D a .0
. 0 0 .0 w - 0 0 w -r P. .0 Ut -f U U U U U U

U~ ~~~~~~~ 4 0 0 0C 0 . 0 0 C 0 C
4 !QA W 2 WN .0 4 4 .0

. J .0 . 0 4 2 2 . 0 m U. U. - 0 0 0 0 N N N

2 , 4 4 2 2 2 W.0 U 0 0N K K K K K K K K

2. t. -0 -0 .0 o o 1. C.1 C.4r .W .0 2 .0 C 2." 2lt l 1. 1. K K K

U. ~ ~ ~ ~ ~ a -- 0. U . U 4 0 C.: - 'D 4 )
.0~ ~~~~~~~~~~ 00 .0 .0 .0 .0 0 . 0 . 0 . 0 0 0 .

0~. 4 'r 4 ww 0 0 w .0 # N w - 0 4 4 * 10 Q 4 4

0

.N N N N 0 4 N N

o N . 0 0 .t 0 .0 . 0 0 0 0 ' 0 0 0 0 0 .0.1530 0 .0 .



0 c0c0 :c0oop CIN 0NP0 0

ONC00 .0000P. 000,0000 040-00 00 .100 0001110 0

OONN 99 ,-NN0 V=N4044ON W

00.640 Ifn 0 N 0000.0. N
00.47M .0 N 0 0 0040

00::0! 0 00

0 - -- - -f~40-4.. co ooo .o.N 0 -

*~~~ ~~~~~ 4 0 .. 4 4n... 0....0 00N

,a 0 .0 .0 0 .000400aaa'a.4 10.0 'D .. 0 N 'D. 'a'

w

LU

0 '

'a w1 0, w* FpbC! w

21 to - l -w w
* MI 4

0z a

.,A .s Vi gu

-f 0. P. P. P. N..JP. a

.0 U - 0 0 NJ154O



'4C4'C4 aw- OC'4 o N!ONCNIO 'CNr4.NM ivo It 4 4 4 4Nw IM04!4t I .Nz!..4v

O'l'ooN O o0oN 0 0 0 0 OO-.OO

MW O-w w N-
44 : 

CN C4 0 0 00m
1NC.4C0'~~M~ x~~C ONC4 UU'ZOCO4CO''. 0

r mCNoNt 40r -. 4C, C0' ONC 4,Cu4 C ~4P. C %C 0 CO ' U~. 0'.N~CC4 UU 0O' 'CCNC0O'4. 00 000r. o g 00000004~ NU .00

0'00'N0 O0~ OO N NN N N N~ N N 4C C ' U2 OC C O 0 '
0000~~~~w w wo w OOOO~ O.,.O.- O0

owO 2 O
-M 01 0 " O.K Z.4.

04A444 4 'OCO.9444444 0'4U' 444 4 0P 0 4 N0 0N N4 4 U'

00-0~0O00000000 00 0 0 0 0e0o:00200O0 =000O000000

x. 0 Nm 7;
0;: ttt2:

OU .. O Nz oC C - NC U ' I . 0 - N C O N % C C ' N 4 % C C 0~ U'~'- -- - -NN NNNNNN NCCCCC C 4444 4444 4U'4UUf:)J4%C
oC44CCCCCCCCCCCCCCCCCC Cz 0CCC C CCC CCC



M"O N o 01 M .'CN0- N 1 '4 NNa'e0 -4 N 4. 0, 'C g C
0000000

00 0

4 
j

-00 0.000 0 0 o000-'0

a Z K 00 C. (L ). Sw 0 '

KC..J4 - N S O ~ S 5 CC~ C) '
UO2;NI!.U GI.X 9- S 4N 5 K K U'It4

W~KKU'SSZZC. .# ~ MD 3)) 0 0 co 555

-0-2o-.e0000 -OOO00e eooe-o!-O-oo O- e

0 40 'coo. O NN 0 tfz4 0 4. US0N4 NS IfraS0

0000 O-N z N-. - Ing _ S S W0MW

z

156


